An empirical evaluation of Bayesian sampling with hybrid Monte Carlo for training neural network classifiers

This article gives a concise overview of Bayesian sampling for neural networks, and then presents an extensive evaluation on a set of various benchmark classification problems. The main objective is to study the sensitivity of this scheme to changes in the prior distribution of the parameters and hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 1999-06, Vol.12 (4), p.677-705
Hauptverfasser: Husmeier, D., Penny, W.D., Roberts, S.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 705
container_issue 4
container_start_page 677
container_title Neural networks
container_volume 12
creator Husmeier, D.
Penny, W.D.
Roberts, S.J.
description This article gives a concise overview of Bayesian sampling for neural networks, and then presents an extensive evaluation on a set of various benchmark classification problems. The main objective is to study the sensitivity of this scheme to changes in the prior distribution of the parameters and hyperparameters, and to evaluate the efficiency of the so-called automatic relevance determination (ARD) method. The article concludes with a comparison of the achieved classification results with those obtained with (i) the evidence scheme and (ii) with non-Bayesian methods.
doi_str_mv 10.1016/S0893-6080(99)00020-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27011575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608099000209</els_id><sourcerecordid>1859399943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-7e4a3e36737e4f61c6e95446067d3de0bbe0ac7a85319297cc80c61122d07c533</originalsourceid><addsrcrecordid>eNqF0c1u1DAUBWALgehQeASQFwi1i4B_EjteoTKigFTEAlhbd5wbanDswU5azdvj6YzoDlb24rvX1jmEPOfsNWdcvfnKeiMbxXp2Zsw5Y0ywxjwgK95r0wjdi4dk9ZeckCel_KxI9a18TE64UEoorVckXESK09Zn7yBQvIGwwOxTpGmk72CHxUOkBaZt8PEHvfXzNb3ebbIf6OcUZ6RryCHRMWU6Z_BxjyIuue6KON-m_Iu6AKX40WMuT8mjEULBZ8fzlHy_fP9t_bG5-vLh0_riqnFtJ-ZGYwsSpdKy3kbFnULTta1iSg9yQLbZIAOnoe8kN8Jo53rmFOdCDEy7TspT8uqwd5vT7wXLbCdfHIYAEdNSrNCM8053FZ79E_K-M9IY0-53dgfqciol42i32U-Qd5Yzu2_E3jVi93FbY-xdI9bUuRfHJ5bNhMP91LGCCl4eAZTawZghOl_unWGt4W1lbw8Ma3A3NU1bnMfocPAZ3WyH5P_zkz_hJqgW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859399943</pqid></control><display><type>article</type><title>An empirical evaluation of Bayesian sampling with hybrid Monte Carlo for training neural network classifiers</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Husmeier, D. ; Penny, W.D. ; Roberts, S.J.</creator><creatorcontrib>Husmeier, D. ; Penny, W.D. ; Roberts, S.J.</creatorcontrib><description>This article gives a concise overview of Bayesian sampling for neural networks, and then presents an extensive evaluation on a set of various benchmark classification problems. The main objective is to study the sensitivity of this scheme to changes in the prior distribution of the parameters and hyperparameters, and to evaluate the efficiency of the so-called automatic relevance determination (ARD) method. The article concludes with a comparison of the achieved classification results with those obtained with (i) the evidence scheme and (ii) with non-Bayesian methods.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(99)00020-9</identifier><identifier>PMID: 12662677</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Automatic relevance determination ; Bayesian statistics ; Benchmarking ; Classification problems ; Electric, optical and optoelectronic circuits ; Electronics ; Evidence approximation ; Exact sciences and technology ; Gibbs sampling ; Hybrid Monte Carlo ; Information, signal and communications theory ; Neural networks ; Parameters and hyperparameters ; Prior and posterior distribution ; Signal processing ; Speech processing ; Telecommunications and information theory</subject><ispartof>Neural networks, 1999-06, Vol.12 (4), p.677-705</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-7e4a3e36737e4f61c6e95446067d3de0bbe0ac7a85319297cc80c61122d07c533</citedby><cites>FETCH-LOGICAL-c452t-7e4a3e36737e4f61c6e95446067d3de0bbe0ac7a85319297cc80c61122d07c533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0893-6080(99)00020-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1904914$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12662677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Husmeier, D.</creatorcontrib><creatorcontrib>Penny, W.D.</creatorcontrib><creatorcontrib>Roberts, S.J.</creatorcontrib><title>An empirical evaluation of Bayesian sampling with hybrid Monte Carlo for training neural network classifiers</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This article gives a concise overview of Bayesian sampling for neural networks, and then presents an extensive evaluation on a set of various benchmark classification problems. The main objective is to study the sensitivity of this scheme to changes in the prior distribution of the parameters and hyperparameters, and to evaluate the efficiency of the so-called automatic relevance determination (ARD) method. The article concludes with a comparison of the achieved classification results with those obtained with (i) the evidence scheme and (ii) with non-Bayesian methods.</description><subject>Applied sciences</subject><subject>Automatic relevance determination</subject><subject>Bayesian statistics</subject><subject>Benchmarking</subject><subject>Classification problems</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Evidence approximation</subject><subject>Exact sciences and technology</subject><subject>Gibbs sampling</subject><subject>Hybrid Monte Carlo</subject><subject>Information, signal and communications theory</subject><subject>Neural networks</subject><subject>Parameters and hyperparameters</subject><subject>Prior and posterior distribution</subject><subject>Signal processing</subject><subject>Speech processing</subject><subject>Telecommunications and information theory</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqF0c1u1DAUBWALgehQeASQFwi1i4B_EjteoTKigFTEAlhbd5wbanDswU5azdvj6YzoDlb24rvX1jmEPOfsNWdcvfnKeiMbxXp2Zsw5Y0ywxjwgK95r0wjdi4dk9ZeckCel_KxI9a18TE64UEoorVckXESK09Zn7yBQvIGwwOxTpGmk72CHxUOkBaZt8PEHvfXzNb3ebbIf6OcUZ6RryCHRMWU6Z_BxjyIuue6KON-m_Iu6AKX40WMuT8mjEULBZ8fzlHy_fP9t_bG5-vLh0_riqnFtJ-ZGYwsSpdKy3kbFnULTta1iSg9yQLbZIAOnoe8kN8Jo53rmFOdCDEy7TspT8uqwd5vT7wXLbCdfHIYAEdNSrNCM8053FZ79E_K-M9IY0-53dgfqciol42i32U-Qd5Yzu2_E3jVi93FbY-xdI9bUuRfHJ5bNhMP91LGCCl4eAZTawZghOl_unWGt4W1lbw8Ma3A3NU1bnMfocPAZ3WyH5P_zkz_hJqgW</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Husmeier, D.</creator><creator>Penny, W.D.</creator><creator>Roberts, S.J.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990601</creationdate><title>An empirical evaluation of Bayesian sampling with hybrid Monte Carlo for training neural network classifiers</title><author>Husmeier, D. ; Penny, W.D. ; Roberts, S.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-7e4a3e36737e4f61c6e95446067d3de0bbe0ac7a85319297cc80c61122d07c533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Automatic relevance determination</topic><topic>Bayesian statistics</topic><topic>Benchmarking</topic><topic>Classification problems</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Evidence approximation</topic><topic>Exact sciences and technology</topic><topic>Gibbs sampling</topic><topic>Hybrid Monte Carlo</topic><topic>Information, signal and communications theory</topic><topic>Neural networks</topic><topic>Parameters and hyperparameters</topic><topic>Prior and posterior distribution</topic><topic>Signal processing</topic><topic>Speech processing</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Husmeier, D.</creatorcontrib><creatorcontrib>Penny, W.D.</creatorcontrib><creatorcontrib>Roberts, S.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Husmeier, D.</au><au>Penny, W.D.</au><au>Roberts, S.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An empirical evaluation of Bayesian sampling with hybrid Monte Carlo for training neural network classifiers</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>1999-06-01</date><risdate>1999</risdate><volume>12</volume><issue>4</issue><spage>677</spage><epage>705</epage><pages>677-705</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This article gives a concise overview of Bayesian sampling for neural networks, and then presents an extensive evaluation on a set of various benchmark classification problems. The main objective is to study the sensitivity of this scheme to changes in the prior distribution of the parameters and hyperparameters, and to evaluate the efficiency of the so-called automatic relevance determination (ARD) method. The article concludes with a comparison of the achieved classification results with those obtained with (i) the evidence scheme and (ii) with non-Bayesian methods.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>12662677</pmid><doi>10.1016/S0893-6080(99)00020-9</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 1999-06, Vol.12 (4), p.677-705
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_27011575
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Automatic relevance determination
Bayesian statistics
Benchmarking
Classification problems
Electric, optical and optoelectronic circuits
Electronics
Evidence approximation
Exact sciences and technology
Gibbs sampling
Hybrid Monte Carlo
Information, signal and communications theory
Neural networks
Parameters and hyperparameters
Prior and posterior distribution
Signal processing
Speech processing
Telecommunications and information theory
title An empirical evaluation of Bayesian sampling with hybrid Monte Carlo for training neural network classifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20empirical%20evaluation%20of%20Bayesian%20sampling%20with%20hybrid%20Monte%20Carlo%20for%20training%20neural%20network%20classifiers&rft.jtitle=Neural%20networks&rft.au=Husmeier,%20D.&rft.date=1999-06-01&rft.volume=12&rft.issue=4&rft.spage=677&rft.epage=705&rft.pages=677-705&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(99)00020-9&rft_dat=%3Cproquest_cross%3E1859399943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859399943&rft_id=info:pmid/12662677&rft_els_id=S0893608099000209&rfr_iscdi=true