An empirical evaluation of Bayesian sampling with hybrid Monte Carlo for training neural network classifiers
This article gives a concise overview of Bayesian sampling for neural networks, and then presents an extensive evaluation on a set of various benchmark classification problems. The main objective is to study the sensitivity of this scheme to changes in the prior distribution of the parameters and hy...
Gespeichert in:
Veröffentlicht in: | Neural networks 1999-06, Vol.12 (4), p.677-705 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article gives a concise overview of Bayesian sampling for neural networks, and then presents an extensive evaluation on a set of various benchmark classification problems. The main objective is to study the sensitivity of this scheme to changes in the prior distribution of the parameters and hyperparameters, and to evaluate the efficiency of the so-called automatic relevance determination (ARD) method. The article concludes with a comparison of the achieved classification results with those obtained with (i) the evidence scheme and (ii) with non-Bayesian methods. |
---|---|
ISSN: | 0893-6080 1879-2782 |
DOI: | 10.1016/S0893-6080(99)00020-9 |