β-Cyclodextrin-Grafted Chitosan Enhances Intestinal Drug Absorption and Its Preliminary Mechanism Exploration

β-Cyclodextrin (CD) and chitosan (CS) have attracted great attention due to their unique properties and structures. β-Cyclodextrin-grafted chitosan (CD-CS) has been widely used as a drug carrier to prepare nano-formulations for drug delivery. However, few researches have been conducted to investigat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AAPS PharmSciTech 2022-08, Vol.23 (6), p.221-221, Article 221
Hauptverfasser: Zou, Linghui, Zhang, Zhongbin, Chen, Jinqing, Yang, Xu, Li, Yuyang, Tang, Jing, Du, Xiaolu, Tang, Ling, Liang, Dan, Zhu, Xiaoyong, Feng, Jianfang, Ding, Wenya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:β-Cyclodextrin (CD) and chitosan (CS) have attracted great attention due to their unique properties and structures. β-Cyclodextrin-grafted chitosan (CD-CS) has been widely used as a drug carrier to prepare nano-formulations for drug delivery. However, few researches have been conducted to investigate the effect of CD-CS as an excipient on cellular uptake and intestinal absorption. Herein, Caco-2 cells were used to investigate the influence of CD-CS on cellular uptake. The MTT assay showed that CD-CS was non-toxic to Caco-2 cells in concentrations ranging from 15.62 to 125 μg/mL. Confocal laser microscopy and flow cytometry measurements indicated that the uptake ability of Caco-2 cells was significantly enhanced after being treated with CD-CS at a concentration of 31.25 μg/mL or incubation for 0.5 h, and the uptake enhancement gradually increased with increasing CD-CS concentration and incubation time. The Caco-2 monolayer cell model and the everted intestinal sac method were employed to preliminarily explore the mechanism of the improved intestinal absorption. The results demonstrated that CD-CS might open the tight junctions and enhance the clathrin-dependent endocytosis, macro-pinocytosis, and phagocytosis of the intestinal epithelial cells. Such findings can serve as references and inspiration for the design of absorption enhancers. Graphical abstract
ISSN:1530-9932
1530-9932
DOI:10.1208/s12249-022-02380-z