Transient self-dewetting of steels after pulsed electron beam melting
Experimental evidence of transient self-dewetting of metallic surfaces is presented. Steel surfaces are melted by a pulsed electron gun, and the subsequent fast cooling against its substrate gives rise to the formation of characteristic patterns that we attribute to the dewetting of the liquid film....
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2001-08, Vol.16 (8), p.2343-2349 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Experimental evidence of transient self-dewetting of metallic surfaces is presented. Steel surfaces are melted by a pulsed electron gun, and the subsequent fast cooling against its substrate gives rise to the formation of characteristic patterns that we attribute to the dewetting of the liquid film. The patterns formed are similar to those obtained by spinodal dewetting, that is, when the dewetting action develops from a nonlinear instability on the liquid surface, and not from holes nucleation. High-purity iron does not show a similar behavior, indicating that the origin of the instability is due to the influence of the sulfur in the temperature dependence of the surface tension of the melt, which gives rise to a Be’nard-Marangoni instability. |
---|---|
ISSN: | 0884-2914 2044-5326 |
DOI: | 10.1557/JMR.2001.0321 |