Experimental and computational investigation on the formation pathway of [RuCl 2 (CO) 2 (ERR′) 2 ] (E = S, Se, Te; R, R′ = Me, Ph) from [RuCl 2 (CO) 3 ] 2 and ERR

The pathways to the formation of the series of [RuCl 2 (CO) 2 (ERR′) 2 ] (E = S, Se, Te; R, R′ = Me, Ph) complexes from [RuCl 2 (CO) 3 ] 2 and ERR′ have been explored experimentally in THF and CH 2 Cl 2 , and computationally by PBE0-D3/def2-TZVP calculations. The end-products and some reaction inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2022-08, Vol.51 (31), p.11747-11757
Hauptverfasser: Taimisto, Marjaana, Bajorek, Tom, Rautiainen, J. Mikko, Pakkanen, Tapani A., Oilunkaniemi, Raija, Laitinen, Risto S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pathways to the formation of the series of [RuCl 2 (CO) 2 (ERR′) 2 ] (E = S, Se, Te; R, R′ = Me, Ph) complexes from [RuCl 2 (CO) 3 ] 2 and ERR′ have been explored experimentally in THF and CH 2 Cl 2 , and computationally by PBE0-D3/def2-TZVP calculations. The end-products and some reaction intermediates have been isolated and identified by NMR spectroscopy, and their crystal structures have been determined by X-ray diffraction. The relative stabilities of the [RuCl 2 (CO) 2 (ERR′) 2 ] isomers follow the order cct > ccc > tcc > ttt ≈ ctc (the terms c / t refer to cis / trans arrangement of the ligands in the order of Cl, CO, and ERR′). The yields were rather similar in both solvents, but the reactions were significantly faster in THF than in CH 2 Cl 2 . The highest yields were observed for the telluroether complexes, and the yields decreased with lighter chalcogenoethers. PBE0-D3/def2-TZVP calculations indicated that the reaction path is independent of the nature of the solvent. The substitution of one CO ligand of the intermediate [RuCl 2 (CO) 3 (ERR′)] by the second ERR′ shows the highest activation barrier and is the rate-determining step in all reactions. The observed faster reaction rate in THF than in CH 2 Cl 2 upon reflux can therefore be explained by the higher boiling point of THF. At room temperature the reactions in both solvents proceed equally slowly. When the reaction is carried out in THF, the formation of [RuCl 2 (CO) 3 (THF)] is also observed, and the reaction may proceed with the substitution of THF by ERR′. The formation of the THF complex, however, is not necessary for the dissociation of the [RuCl 2 (CO) 3 ] 2 . Thermal energy at room temperature is sufficient to cleave one of the bridging Ru–Cl bonds. The intermediate thus formed undergoes a facile reaction with ERR′. This mechanism is viable also in non-coordinating CH 2 Cl 2 .
ISSN:1477-9226
1477-9234
DOI:10.1039/d2dt02018a