The Improved Volumetric-Efficiency of an Axial-Piston Pump Utilizing a Trapped-Volume Design
In this research, the volumetric efficiency of the axial-piston pump is examined as it relates to the compressibility losses of the fluid. In particular, two valve-plate geometries are compared to show that alterations in the valve-plate design can cause differences in the operating efficiency of th...
Gespeichert in:
Veröffentlicht in: | Journal of dynamic systems, measurement, and control measurement, and control, 2001-09, Vol.123 (3), p.479-487 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this research, the volumetric efficiency of the axial-piston pump is examined as it relates to the compressibility losses of the fluid. In particular, two valve-plate geometries are compared to show that alterations in the valve-plate design can cause differences in the operating efficiency of the pump. In this paper, a standard valve-plate design which utilizes slots is compared to a trapped-volume design which eliminates the slots altogether. In the analytical result of this paper, it may be shown that the standard valve-plate design introduces a volumetric loss which may be accounted for by the uncontrolled expansion and compression of the fluid that occurs through the slots themselves. By eliminating these slots, and utilizing a trapped volume design, it may be shown that improvements in the operating efficiency can be achieved. Though this paper does not claim to provide the ideal valve-plate design for all pump applications, it does provide the theoretical reason for utilizing trapped volumes and lends general insight into the overall problem of valve-plate design. |
---|---|
ISSN: | 0022-0434 1528-9028 |
DOI: | 10.1115/1.1389311 |