Cloud Computing for COVID-19: Lessons Learned From Massively Parallel Models of Ventilator Splitting
A patient-specific airflow simulation was developed to help address the pressing need for an expansion of the ventilator capacity in response to the COVID-19 pandemic. The computational model provides guidance regarding how to split a ventilator between two or more patients with differing respirator...
Gespeichert in:
Veröffentlicht in: | Computing in science & engineering 2020-11, Vol.22 (6), p.37-47 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A patient-specific airflow simulation was developed to help address the pressing need for an expansion of the ventilator capacity in response to the COVID-19 pandemic. The computational model provides guidance regarding how to split a ventilator between two or more patients with differing respiratory physiologies. To address the need for fast deployment and identification of optimal patient-specific tuning, there was a need to simulate hundreds of millions of different clinically relevant parameter combinations in a short time. This task, driven by the dire circumstances, presented unique computational and research challenges. We present here the guiding principles and lessons learned as to how a large-scale and robust cloud instance was designed and deployed within 24 hours and 800 000 compute hours were utilized in a 72-hour period. We discuss the design choices to enable a quick turnaround of the model, execute the simulation, and create an intuitive and interactive interface. |
---|---|
ISSN: | 1521-9615 1558-366X |
DOI: | 10.1109/MCSE.2020.3024062 |