Dual structure engineering of SiOx-acrylic yarn derived carbon nanofiber based foldable Si anodes for low-cost lithium-ion batteries

[Display omitted] Silicon (Si) is attracted much attention due to its outstanding theoretical capacity (4200 mAh/g) as the anode of lithium-ion batteries (LIBs). However, the large volume change and low electron/ion conductivity during the charge and discharge process limit the electrochemical perfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2022-12, Vol.628, p.530-539
Hauptverfasser: Cheng, Zhongling, Pan, Peng, Jiang, Liyuan, Mao, Jieting, Ni, Changke, Wang, Zixi, Zhang, Mengmeng, Zhang, Yaru, Yu, Yingsong, Zhai, XingXing, Hu, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 539
container_issue
container_start_page 530
container_title Journal of colloid and interface science
container_volume 628
creator Cheng, Zhongling
Pan, Peng
Jiang, Liyuan
Mao, Jieting
Ni, Changke
Wang, Zixi
Zhang, Mengmeng
Zhang, Yaru
Yu, Yingsong
Zhai, XingXing
Hu, Yi
description [Display omitted] Silicon (Si) is attracted much attention due to its outstanding theoretical capacity (4200 mAh/g) as the anode of lithium-ion batteries (LIBs). However, the large volume change and low electron/ion conductivity during the charge and discharge process limit the electrochemical performance of Si-based anodes. Here we demonstrate a foldable acrylic yarn-based composite carbon nanofiber embedded by Si@SiOx particles (Si@SiOx-CACNFs) as the anode material. Since the amorphous SiOx and carbon (C) coating on the outside of the Si particles can provide a double buffer for volume expansion while reducing the contact between the Si core and the electrolyte to form a thin and stable solid electrolyte interface (SEI) film. Simultaneous in-situ electrochemical impedance spectroscopy (in-situ EIS) and galvanostatic intermittent titration technique (GITT) tests show that SiOx and C have higher ion/electron transport rates, and in addition, using acrylic fiber yarn and Zn(Ac)2 as raw materials reduces the manufacturing cost and enhanced mechanical properties. Therefore, the half-cell can achieve a high initial Coulombic efficiency (ICE) of 82.3% and a reversible capacity of 1358.2 mAh/g after 180 cycles. It can return to its original shape and remain intact after four consecutive folds, and the soft-pack full battery can also light up LED lights under different bending conditions.
doi_str_mv 10.1016/j.jcis.2022.07.186
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2699957158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979722013662</els_id><sourcerecordid>2699957158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-e913a4172ab308684df9621bff6ab5839da5698cc9f1d16fd88f92747276fd4b3</originalsourceid><addsrcrecordid>eNp9kEtPHDEQhK0okbLZ5A_k5COXGWzPzngscYlIeEhIHICz5UcbvPLaYHsIe88Pj1fLmVOrq_orqQuhn5T0lNDpdNtvjS89I4z1hPd0nj6hFSVi7Dglw2e0IoTRTnDBv6JvpWwJoXQcxQr9-72ogEvNi6lLBgzx0UeA7OMjTg7f-du3Tpm8D97gvcoR2-a9gsVGZZ0ijiom5zVkrFVpskvBKh2gkbhZFkqTMg7pb2dSqTj4-uSXXecbq1WtLQ3Kd_TFqVDgx_tco4eLP_fnV93N7eX1-a-bzgzDUDsQdFAbypnSA5mneWOdmBjVzk1Kj_MgrBonMRsjHLV0cnaenWB8wxlvy0YPa3RyzH3O6WWBUuXOFwMhqAhpKZJNQoiR05a1Rux4anIqJYOTz9nvVN5LSuShcrmVh8rloXJJuGyVN-jsCEF74tVDlsV4iAasz2CqtMl_hP8HUs2M0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699957158</pqid></control><display><type>article</type><title>Dual structure engineering of SiOx-acrylic yarn derived carbon nanofiber based foldable Si anodes for low-cost lithium-ion batteries</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cheng, Zhongling ; Pan, Peng ; Jiang, Liyuan ; Mao, Jieting ; Ni, Changke ; Wang, Zixi ; Zhang, Mengmeng ; Zhang, Yaru ; Yu, Yingsong ; Zhai, XingXing ; Hu, Yi</creator><creatorcontrib>Cheng, Zhongling ; Pan, Peng ; Jiang, Liyuan ; Mao, Jieting ; Ni, Changke ; Wang, Zixi ; Zhang, Mengmeng ; Zhang, Yaru ; Yu, Yingsong ; Zhai, XingXing ; Hu, Yi</creatorcontrib><description>[Display omitted] Silicon (Si) is attracted much attention due to its outstanding theoretical capacity (4200 mAh/g) as the anode of lithium-ion batteries (LIBs). However, the large volume change and low electron/ion conductivity during the charge and discharge process limit the electrochemical performance of Si-based anodes. Here we demonstrate a foldable acrylic yarn-based composite carbon nanofiber embedded by Si@SiOx particles (Si@SiOx-CACNFs) as the anode material. Since the amorphous SiOx and carbon (C) coating on the outside of the Si particles can provide a double buffer for volume expansion while reducing the contact between the Si core and the electrolyte to form a thin and stable solid electrolyte interface (SEI) film. Simultaneous in-situ electrochemical impedance spectroscopy (in-situ EIS) and galvanostatic intermittent titration technique (GITT) tests show that SiOx and C have higher ion/electron transport rates, and in addition, using acrylic fiber yarn and Zn(Ac)2 as raw materials reduces the manufacturing cost and enhanced mechanical properties. Therefore, the half-cell can achieve a high initial Coulombic efficiency (ICE) of 82.3% and a reversible capacity of 1358.2 mAh/g after 180 cycles. It can return to its original shape and remain intact after four consecutive folds, and the soft-pack full battery can also light up LED lights under different bending conditions.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2022.07.186</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Acrylic yarn ; Carbon nanofiber ; Foldability ; Si anode ; SiOx</subject><ispartof>Journal of colloid and interface science, 2022-12, Vol.628, p.530-539</ispartof><rights>2022 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-e913a4172ab308684df9621bff6ab5839da5698cc9f1d16fd88f92747276fd4b3</citedby><cites>FETCH-LOGICAL-c333t-e913a4172ab308684df9621bff6ab5839da5698cc9f1d16fd88f92747276fd4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2022.07.186$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Cheng, Zhongling</creatorcontrib><creatorcontrib>Pan, Peng</creatorcontrib><creatorcontrib>Jiang, Liyuan</creatorcontrib><creatorcontrib>Mao, Jieting</creatorcontrib><creatorcontrib>Ni, Changke</creatorcontrib><creatorcontrib>Wang, Zixi</creatorcontrib><creatorcontrib>Zhang, Mengmeng</creatorcontrib><creatorcontrib>Zhang, Yaru</creatorcontrib><creatorcontrib>Yu, Yingsong</creatorcontrib><creatorcontrib>Zhai, XingXing</creatorcontrib><creatorcontrib>Hu, Yi</creatorcontrib><title>Dual structure engineering of SiOx-acrylic yarn derived carbon nanofiber based foldable Si anodes for low-cost lithium-ion batteries</title><title>Journal of colloid and interface science</title><description>[Display omitted] Silicon (Si) is attracted much attention due to its outstanding theoretical capacity (4200 mAh/g) as the anode of lithium-ion batteries (LIBs). However, the large volume change and low electron/ion conductivity during the charge and discharge process limit the electrochemical performance of Si-based anodes. Here we demonstrate a foldable acrylic yarn-based composite carbon nanofiber embedded by Si@SiOx particles (Si@SiOx-CACNFs) as the anode material. Since the amorphous SiOx and carbon (C) coating on the outside of the Si particles can provide a double buffer for volume expansion while reducing the contact between the Si core and the electrolyte to form a thin and stable solid electrolyte interface (SEI) film. Simultaneous in-situ electrochemical impedance spectroscopy (in-situ EIS) and galvanostatic intermittent titration technique (GITT) tests show that SiOx and C have higher ion/electron transport rates, and in addition, using acrylic fiber yarn and Zn(Ac)2 as raw materials reduces the manufacturing cost and enhanced mechanical properties. Therefore, the half-cell can achieve a high initial Coulombic efficiency (ICE) of 82.3% and a reversible capacity of 1358.2 mAh/g after 180 cycles. It can return to its original shape and remain intact after four consecutive folds, and the soft-pack full battery can also light up LED lights under different bending conditions.</description><subject>Acrylic yarn</subject><subject>Carbon nanofiber</subject><subject>Foldability</subject><subject>Si anode</subject><subject>SiOx</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPHDEQhK0okbLZ5A_k5COXGWzPzngscYlIeEhIHICz5UcbvPLaYHsIe88Pj1fLmVOrq_orqQuhn5T0lNDpdNtvjS89I4z1hPd0nj6hFSVi7Dglw2e0IoTRTnDBv6JvpWwJoXQcxQr9-72ogEvNi6lLBgzx0UeA7OMjTg7f-du3Tpm8D97gvcoR2-a9gsVGZZ0ijiom5zVkrFVpskvBKh2gkbhZFkqTMg7pb2dSqTj4-uSXXecbq1WtLQ3Kd_TFqVDgx_tco4eLP_fnV93N7eX1-a-bzgzDUDsQdFAbypnSA5mneWOdmBjVzk1Kj_MgrBonMRsjHLV0cnaenWB8wxlvy0YPa3RyzH3O6WWBUuXOFwMhqAhpKZJNQoiR05a1Rux4anIqJYOTz9nvVN5LSuShcrmVh8rloXJJuGyVN-jsCEF74tVDlsV4iAasz2CqtMl_hP8HUs2M0g</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Cheng, Zhongling</creator><creator>Pan, Peng</creator><creator>Jiang, Liyuan</creator><creator>Mao, Jieting</creator><creator>Ni, Changke</creator><creator>Wang, Zixi</creator><creator>Zhang, Mengmeng</creator><creator>Zhang, Yaru</creator><creator>Yu, Yingsong</creator><creator>Zhai, XingXing</creator><creator>Hu, Yi</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20221215</creationdate><title>Dual structure engineering of SiOx-acrylic yarn derived carbon nanofiber based foldable Si anodes for low-cost lithium-ion batteries</title><author>Cheng, Zhongling ; Pan, Peng ; Jiang, Liyuan ; Mao, Jieting ; Ni, Changke ; Wang, Zixi ; Zhang, Mengmeng ; Zhang, Yaru ; Yu, Yingsong ; Zhai, XingXing ; Hu, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-e913a4172ab308684df9621bff6ab5839da5698cc9f1d16fd88f92747276fd4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acrylic yarn</topic><topic>Carbon nanofiber</topic><topic>Foldability</topic><topic>Si anode</topic><topic>SiOx</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Zhongling</creatorcontrib><creatorcontrib>Pan, Peng</creatorcontrib><creatorcontrib>Jiang, Liyuan</creatorcontrib><creatorcontrib>Mao, Jieting</creatorcontrib><creatorcontrib>Ni, Changke</creatorcontrib><creatorcontrib>Wang, Zixi</creatorcontrib><creatorcontrib>Zhang, Mengmeng</creatorcontrib><creatorcontrib>Zhang, Yaru</creatorcontrib><creatorcontrib>Yu, Yingsong</creatorcontrib><creatorcontrib>Zhai, XingXing</creatorcontrib><creatorcontrib>Hu, Yi</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Zhongling</au><au>Pan, Peng</au><au>Jiang, Liyuan</au><au>Mao, Jieting</au><au>Ni, Changke</au><au>Wang, Zixi</au><au>Zhang, Mengmeng</au><au>Zhang, Yaru</au><au>Yu, Yingsong</au><au>Zhai, XingXing</au><au>Hu, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual structure engineering of SiOx-acrylic yarn derived carbon nanofiber based foldable Si anodes for low-cost lithium-ion batteries</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2022-12-15</date><risdate>2022</risdate><volume>628</volume><spage>530</spage><epage>539</epage><pages>530-539</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Silicon (Si) is attracted much attention due to its outstanding theoretical capacity (4200 mAh/g) as the anode of lithium-ion batteries (LIBs). However, the large volume change and low electron/ion conductivity during the charge and discharge process limit the electrochemical performance of Si-based anodes. Here we demonstrate a foldable acrylic yarn-based composite carbon nanofiber embedded by Si@SiOx particles (Si@SiOx-CACNFs) as the anode material. Since the amorphous SiOx and carbon (C) coating on the outside of the Si particles can provide a double buffer for volume expansion while reducing the contact between the Si core and the electrolyte to form a thin and stable solid electrolyte interface (SEI) film. Simultaneous in-situ electrochemical impedance spectroscopy (in-situ EIS) and galvanostatic intermittent titration technique (GITT) tests show that SiOx and C have higher ion/electron transport rates, and in addition, using acrylic fiber yarn and Zn(Ac)2 as raw materials reduces the manufacturing cost and enhanced mechanical properties. Therefore, the half-cell can achieve a high initial Coulombic efficiency (ICE) of 82.3% and a reversible capacity of 1358.2 mAh/g after 180 cycles. It can return to its original shape and remain intact after four consecutive folds, and the soft-pack full battery can also light up LED lights under different bending conditions.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2022.07.186</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2022-12, Vol.628, p.530-539
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2699957158
source Access via ScienceDirect (Elsevier)
subjects Acrylic yarn
Carbon nanofiber
Foldability
Si anode
SiOx
title Dual structure engineering of SiOx-acrylic yarn derived carbon nanofiber based foldable Si anodes for low-cost lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20structure%20engineering%20of%20SiOx-acrylic%20yarn%20derived%20carbon%20nanofiber%20based%20foldable%20Si%20anodes%20for%20low-cost%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Cheng,%20Zhongling&rft.date=2022-12-15&rft.volume=628&rft.spage=530&rft.epage=539&rft.pages=530-539&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2022.07.186&rft_dat=%3Cproquest_cross%3E2699957158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699957158&rft_id=info:pmid/&rft_els_id=S0021979722013662&rfr_iscdi=true