Dual structure engineering of SiOx-acrylic yarn derived carbon nanofiber based foldable Si anodes for low-cost lithium-ion batteries

[Display omitted] Silicon (Si) is attracted much attention due to its outstanding theoretical capacity (4200 mAh/g) as the anode of lithium-ion batteries (LIBs). However, the large volume change and low electron/ion conductivity during the charge and discharge process limit the electrochemical perfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2022-12, Vol.628, p.530-539
Hauptverfasser: Cheng, Zhongling, Pan, Peng, Jiang, Liyuan, Mao, Jieting, Ni, Changke, Wang, Zixi, Zhang, Mengmeng, Zhang, Yaru, Yu, Yingsong, Zhai, XingXing, Hu, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Silicon (Si) is attracted much attention due to its outstanding theoretical capacity (4200 mAh/g) as the anode of lithium-ion batteries (LIBs). However, the large volume change and low electron/ion conductivity during the charge and discharge process limit the electrochemical performance of Si-based anodes. Here we demonstrate a foldable acrylic yarn-based composite carbon nanofiber embedded by Si@SiOx particles (Si@SiOx-CACNFs) as the anode material. Since the amorphous SiOx and carbon (C) coating on the outside of the Si particles can provide a double buffer for volume expansion while reducing the contact between the Si core and the electrolyte to form a thin and stable solid electrolyte interface (SEI) film. Simultaneous in-situ electrochemical impedance spectroscopy (in-situ EIS) and galvanostatic intermittent titration technique (GITT) tests show that SiOx and C have higher ion/electron transport rates, and in addition, using acrylic fiber yarn and Zn(Ac)2 as raw materials reduces the manufacturing cost and enhanced mechanical properties. Therefore, the half-cell can achieve a high initial Coulombic efficiency (ICE) of 82.3% and a reversible capacity of 1358.2 mAh/g after 180 cycles. It can return to its original shape and remain intact after four consecutive folds, and the soft-pack full battery can also light up LED lights under different bending conditions.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2022.07.186