Three-dimensional modelling and full-scale testing of stone arch bridges
Existing test results of full-scale in-service masonry arch bridges are analysed to determine appropriate material properties for the modelling of this structural type. Three-dimensional nonlinear finite element models of three masonry arch bridges are generated using a commercially available finite...
Gespeichert in:
Veröffentlicht in: | Computers & structures 2001-11, Vol.79 (29), p.2645-2662 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Existing test results of full-scale in-service masonry arch bridges are analysed to determine appropriate material properties for the modelling of this structural type. Three-dimensional nonlinear finite element models of three masonry arch bridges are generated using a commercially available finite element package. The behaviour of the masonry is replicated by use of a solid element that can have its stiffness modified by the development of cracks and crushing. The fill is modelled as a Drucker–Prager material, and the interface between the masonry and the fill is characterised as a frictional contact surface. The bridges are modelled under service loads, and the model results are compared to the results of a program of field testing of the structures. It is found that the assumption of a reasonable set of material properties, based on visual observations of the material and construction of the structure, implemented through a program of three-dimensional nonlinear finite element analysis enable good predictions of the actual behaviour of a masonry arch bridge. |
---|---|
ISSN: | 0045-7949 1879-2243 |
DOI: | 10.1016/S0045-7949(01)00109-2 |