The impact of GPS-derived activity spaces on personal PM2.5 exposures in the MADRES cohort

In-utero exposure to particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) is associated with low birth weight and health risks later in life. Pregnant women are mobile and locations they spend time in contribute to their personal PM2.5 exposures. Therefore, it is important to unders...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research 2022-11, Vol.214, p.114029-114029, Article 114029
Hauptverfasser: Xu, Yan, Yi, Li, Cabison, Jane, Rosales, Marisela, O'Sharkey, Karl, Chavez, Thomas A., Johnson, Mark, Lurmann, Frederick, Pavlovic, Nathan, Bastain, Theresa M., Breton, Carrie V., Wilson, John P., Habre, Rima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In-utero exposure to particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) is associated with low birth weight and health risks later in life. Pregnant women are mobile and locations they spend time in contribute to their personal PM2.5 exposures. Therefore, it is important to understand how mobility and exposures encountered within activity spaces contribute to personal PM2.5 exposures during pregnancy. We collected 48-h integrated personal PM2.5 samples and continuous geolocation (GPS) data for 213 predominantly Hispanic/Latina pregnant women in their 3rd trimester in Los Angeles, CA. We also collected questionnaires and modeled outdoor air pollution and meteorology in their residential neighborhood. We calculated three GPS-derived activity space measures of exposure to road networks, greenness (NDVI), parks, traffic volume, walkability, and outdoor PM2.5 and temperature. We used bivariate analyses to screen variables (GPS-extracted exposures in activity spaces, individual characteristics, and residential neighborhood exposures) based on their relationship with personal, 48-h integrated PM2.5 concentrations. We then built a generalized linear model to explain the variability in personal PM2.5 exposure and identify key contributing factors. Indoor PM2.5 sources, parity, and home ventilation were significantly associated with personal exposure. Activity-space based exposure to roads was associated with significantly higher personal PM2.5 exposure, while greenness was associated with lower personal PM2.5 exposure (β = −3.09 μg/m3 per SD increase in NDVI, p-value = 0.018). The contribution of outdoor PM2.5 to personal exposure was positive but relatively lower (β = 2.05 μg/m3 per SD increase, p-value = 0.016) than exposures in activity spaces and the indoor environment. The final model explained 34% of the variability in personal PM2.5 concentrations. Our findings highlight the importance of activity spaces and the indoor environment on personal PM2.5 exposures of pregnant women living in Los Angeles, CA. This work also showcases the multiple, complex factors that contribute to total personal PM2.5 exposure. •48-hr integrated personal PM2.5 samples paired with GPS records for 213 pregnant women.•Novel approach of examining activity space impacts on personal PM2.5 exposures.•“Greener” activity space associated with lower exposure.•Denser road network within activity spaces associated with higher exposure.•Indoor environment, time-activities, a
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2022.114029