The dependence of normal and abnormal grain growth in silver on annealing temperature and atmosphere

When polycrystalline pure Ag specimens are compressed to 40 pct and annealed, there is no noticeable texture in the recrystallized structure, and normal or abnormal grain growth occurs during annealing. When annealed further in low vacuum (10−3 to 10−4 Torr) after the completion of recrystallization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2001-03, Vol.32 (3), p.469-475
Hauptverfasser: Koo, Jae Bon, Yoon, Duk Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When polycrystalline pure Ag specimens are compressed to 40 pct and annealed, there is no noticeable texture in the recrystallized structure, and normal or abnormal grain growth occurs during annealing. When annealed further in low vacuum (10−3 to 10−4 Torr) after the completion of recrystallization, normal grain growth occurs at 920 °C and 800 °C, but abnormal grain growth (AGG) occurs at 700 °C, 600 °C, and 500 °C. When annealed in O2 atmosphere, normal grain growth occurs at 920 °C and AGG at 800 °C, 700 °C, 600 °C, and 500 °C. At temperatures close to the melting point (960.5 °C), the grain boundaries are expected to be rough at atomic scales and hence have nearly isotropic boundary energy. The normal growth of the grains with such atomically rough boundary structures is consistent with some theoretical analysis and simulation. At low temperatures, the grain boundaries can be faceted with probably singular structures. Because these grain boundaries apparently migrate by the movement of boundary steps, AGG occurs. The observations with optical microscopy indeed indicate that some grain boundaries are faceted at low temperatures and all of them are smoothly curved indicating an atomically rough structure at high temperatures close to the melting point. Although the results are not conclusive, they support the hypothesis that AGG occurs because the faceted singular grain boundaries migrate by the step mechanism.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-001-0063-4