A study of formaldehyde chemistry above a forest canopy
Gas-phase formaldehyde (HCHO) was measured at a mixed deciduous/coniferous forest site as a part of the PROPHET 1998 summer field intensive. For the measurement period of July 11 through August 20, 1998, formaldehyde mixing ratios ranged from 0.5 to 12 ppb at a height similar to 10 m above the fores...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research 2001-10, Vol.106 (D20), p.24-405 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gas-phase formaldehyde (HCHO) was measured at a mixed deciduous/coniferous forest site as a part of the PROPHET 1998 summer field intensive. For the measurement period of July 11 through August 20, 1998, formaldehyde mixing ratios ranged from 0.5 to 12 ppb at a height similar to 10 m above the forest canopy, with the highest concentrations observed in southeasterly air masses. Concentrations varied on average from a mid-afternoon maximum influenced by photochemical production of 4.0 ppb, to a late night minimum of 2.2 ppb, probably resulting from dry depositional loss. An analysis of local HCHO sources revealed that isoprene was the most important of the measured formaldehyde precursors, contributing, on average, 82% of the calculated midday HCHO production rate. We calculate that the nighttime HCHO dry deposition velocity is 2.6 times that of ozone, or approximately 0.65 cm/s. In the daytime, photolysis, dry deposition, and reaction with hydroxyl radical (OH) are roughly equally important as loss processes. Explicit calculations of HCHO chemical behavior highlighted the probable importance of transport and surface deposition to understanding the diel behavior of formaldehyde. |
---|---|
ISSN: | 0148-0227 |