Kernel-dependent support vector error bounds

Model selection in support vector machines is usually carried out by minimizing the quotient of the radius of the smallest enclosing sphere of the data and the observed margin on the training set. We provide a new criterion taking the distribution within that sphere into account by considering the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Scholkopf, B, Shawe-Taylor, J, Smola, A.J, Williamson, R.C
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Model selection in support vector machines is usually carried out by minimizing the quotient of the radius of the smallest enclosing sphere of the data and the observed margin on the training set. We provide a new criterion taking the distribution within that sphere into account by considering the eigenvalue distribution of the Gram matrix of the data. Experimental results on real world data show that this new criterion provides a good prediction of the shape of the curve relating generalization error to kernel width.
ISSN:0537-9989
DOI:10.1049/cp:19991092