Common, uncommon, and novel applications of random forest in psychological research

Recent reform efforts have pushed toward a better understanding of the distinction between exploratory and confirmatory research, and appropriate use of each. As some utilize more exploratory tools, it may be tempting to employ multiple linear regression models. In this paper, we advocate for the us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavior Research Methods 2023-08, Vol.55 (5), p.2447-2466
Hauptverfasser: Fife, Dustin A., D’Onofrio, Juliana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent reform efforts have pushed toward a better understanding of the distinction between exploratory and confirmatory research, and appropriate use of each. As some utilize more exploratory tools, it may be tempting to employ multiple linear regression models. In this paper, we advocate for the use of random forest (RF) models. RF is able to obtain better predictive performance than traditional regression, while also inherently protecting against overfitting as well as detecting nonlinear effects and interactions among predictors. Given the advantages of RF compared to other statistical procedures, it is a tool commonly used within a plethora of industries, including stock trading, banking, pharmaceuticals, and patient healthcare planning. However, we find RF is used within the field of psychology comparatively less frequently. In the current paper, we advocate for RF as an important statistical tool within the context of behavioral and psychological research. In hopes of increasing the use of RF in the field of psychology, we provide information pertaining to the limitations one might confront in using RF and how to overcome such limitations. Moreover, we discuss various methods for how to optimally utilize RF with psychological data, such as nonparametric modeling, interaction and nonlinearity detection, variable selection, prediction and classification modeling, and assessing parameters of Monte Carlo simulations. Throughout, we illustrate the use of RF with visualization strategies, aimed to make RF models more comprehensible and intuitive.
ISSN:1554-3528
1554-3528
DOI:10.3758/s13428-022-01901-9