Easy Fabrication of a Polymeric Transparent Sheet to Combat Microbial Infection
Surges in infectious diseases and their transmission in households and commercial and healthcare settings have increased the use of polymeric materials as protective covers. Despite ongoing efforts, conventional polymeric materials still pose the threat of surface-associated transmission of pathogen...
Gespeichert in:
Veröffentlicht in: | ACS applied bio materials 2022-08, Vol.5 (8), p.3951-3959 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Surges in infectious diseases and their transmission in households and commercial and healthcare settings have increased the use of polymeric materials as protective covers. Despite ongoing efforts, conventional polymeric materials still pose the threat of surface-associated transmission of pathogens due to the fact that they lack antimicrobial properties. Here, we have developed an easy-to-fabricate polymeric sheet [quaternary polymeric transparent sheet (QPTS)] that shows an excellent antimicrobial property and is also transparent in nature, increasing its practical applications in a wide range of surfaces. The sheet was fabricated by combining cationic amphiphilic water-soluble polyethylenimine derivative (QPEINH-C6) and poly(vinyl alcohol) (PVA). The optimum composition (QPTS-3) exhibited a complete reduction of bacterial and fungal infection (∼3–4 log reduction) within 15 min. QPTS-3 also exhibited activity against antibiotic-insusceptible metabolically inactive bacterial cells. The sheet prevented the growth of MRSA biofilm even after 72 h of incubation, which was confirmed through electron microscopy on the QPTS sheet. Most importantly, ∼99.9% of the influenza viral load was reduced completely within 30 min of exposure of the sheet. Apart from the antimicrobial property, the sheet successfully retained its transparency (∼88%) and maintained a significant mechanical strength (∼15 N), highlighting its potential applications in commercial and healthcare settings. |
---|---|
ISSN: | 2576-6422 2576-6422 |
DOI: | 10.1021/acsabm.2c00476 |