Identifying the course of the greater palatine artery using intraoral ultrasonography: cohort study
Aims The greater palatine artery (GPA) is one of the most important anatomical structure for free gingival grafts or connective-tissue grafts during soft tissue surgery for dental implants. Several studies have identified the approximate location of the GPA, but it is impossible to detect its exact...
Gespeichert in:
Veröffentlicht in: | Surgical and radiologic anatomy (English ed.) 2022-08, Vol.44 (8), p.1139-1146 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aims
The greater palatine artery (GPA) is one of the most important anatomical structure for free gingival grafts or connective-tissue grafts during soft tissue surgery for dental implants. Several studies have identified the approximate location of the GPA, but it is impossible to detect its exact location during surgery due to large variability between individuals. The authors, therefore, investigated the course of the GPA using intraoral ultrasonography to determine the feasibility of using real-time nonionizing ultrasonography for implant surgery.
Materials and methods
This study included 40 healthy young participants. The courses of the GPA were identified using intraoral ultrasound probes from the first premolar to the second molar. The distance from the gingival margin to the GPA (GM-GPA) and the depth of the palatal gingiva from the GPA (PG-GPA) were measured by two independent examiners. Measurements were analyzed statistically, and interexaminer reliability was determined.
Results
The distance of the GM-GPA and the mean depth of the PG-GPA were 14.8 ± 1.6 mm and 4.10 ± 0.51 mm (mean ± SD), respectively. GM-GPA decreased when the GPA ran from the second molar to the first molar, and GM-GPA was significantly shorter in females (
P
|
---|---|
ISSN: | 1279-8517 0930-1038 1279-8517 |
DOI: | 10.1007/s00276-022-02967-y |