An instance-based model account of the benefits of varied practice in visuomotor skill

Exposing learners to variability during training has been demonstrated to improve performance in subsequent transfer testing. Such variability benefits are often accounted for by assuming that learners are developing some general task schema or structure. However much of this research has neglected...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognitive psychology 2022-09, Vol.137, p.101491-101491, Article 101491
Hauptverfasser: Gorman, Thomas E., Goldstone, Robert L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exposing learners to variability during training has been demonstrated to improve performance in subsequent transfer testing. Such variability benefits are often accounted for by assuming that learners are developing some general task schema or structure. However much of this research has neglected to account for differences in similarity between varied and constant training conditions. In a between-groups manipulation, we trained participants on a simple projectile launching task, with either varied or constant conditions. We replicate previous findings showing a transfer advantage of varied over constant training. Furthermore, we show that a standard similarity model is insufficient to account for the benefits of variation, but, if the model is adjusted to assume that varied learners are tuned towards a broader generalization gradient, then a similarity-based model is sufficient to explain the observed benefits of variation. Our results therefore suggest that some variability benefits can be accommodated within instance-based models without positing the learning of some schemata or structure.
ISSN:0010-0285
1095-5623
DOI:10.1016/j.cogpsych.2022.101491