Strengthened d–p Orbital Hybridization through Asymmetric Coordination Engineering of Single-Atom Catalysts for Durable Lithium–Sulfur Batteries

Although single-atom catalysts (SACs) have been largely explored in lithium–sulfur (Li–S) batteries, the commonly reported nonpolar transition metal-N4 coordinations only demonstrate inferior adsorption and catalytic activity toward shuttled lithium polysulfides (LiPSs). Herein, single Fe atoms with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2022-08, Vol.22 (15), p.6366-6374
Hauptverfasser: Liu, Genlin, Wang, Wenmin, Zeng, Pan, Yuan, Cheng, Wang, Lei, Li, Hongtai, Zhang, Hao, Sun, Xuhui, Dai, Kehua, Mao, Jing, Li, Xin, Zhang, Liang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although single-atom catalysts (SACs) have been largely explored in lithium–sulfur (Li–S) batteries, the commonly reported nonpolar transition metal-N4 coordinations only demonstrate inferior adsorption and catalytic activity toward shuttled lithium polysulfides (LiPSs). Herein, single Fe atoms with asymmetric coordination configurations of Fe–N3C2–C were precisely designed and synthesized as efficient immobilizer and catalyst for LiPSs. The experimental and theoretical results elucidate that the asymmetrically coordinated Fe–N3C2–C moieties not only enhance the LiPSs anchoring capability by the formation of extra π-bonds originating from S p orbital and Fe d x 2–y 2 /d xy orbital hybridization but also boost the redox kinetics of LiPSs with reduced Li2S precipitation/decomposition barrier, leading to suppressed shuttle effect. Consequently, the Li–S batteries assembled with Fe–N3C2–C exhibit high areal capacity and cycling stability even under high sulfur loading and lean electrolyte conditions. This work highlights the important role of coordination symmetry of SACs for promoting the practical application of Li–S batteries.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.2c02183