Electric Field Modulation of 2D Perovskite Excitonics

Multiquantum-well (MQW) perovskite is one of the forerunners in high-efficiency perovskite LED (PeLEDs) research. Despite the rapid inroads, PeLEDs suffer from the pertinent issue of efficiency decrease with increasing brightness, commonly known as “efficiency roll-off”. The underlying mechanisms ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2022-08, Vol.13 (31), p.7161-7169
Hauptverfasser: Zhang, Qiannan, Krisnanda, Tanjung, Giovanni, David, Dini, Kevin, Ye, Senyun, Feng, Minjun, Liew, Timothy C. H., Sum, Tze Chien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multiquantum-well (MQW) perovskite is one of the forerunners in high-efficiency perovskite LED (PeLEDs) research. Despite the rapid inroads, PeLEDs suffer from the pertinent issue of efficiency decrease with increasing brightness, commonly known as “efficiency roll-off”. The underlying mechanisms are presently an open question. Herein, we explicate the E-field effects on the exciton states in the archetypal MQW perovskite (C6H5C2H4NH3)2PbI4, or PEPI, in a device-like architecture using field-assisted transient spectroscopy and theoretical modeling. The applied E-field results in a complex interplay of spectral blueshifts and enhancement/quenching of the different exciton modes. The former originates from the DC Stark shift, while the latter is attributed to the E-field modulation of the transfer rates between bright/dark exciton modes. Importantly, our findings uncover crucial insights into the photophysical processes under E-field modulation contributing to efficiency roll-off in MQW PeLEDs. Electrical modulation of exciton properties presents exciting possibilities for signal processing devices.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.2c01792