A semi-analytical method for the elastic-plastic large deflection analysis of welded steel or aluminum plating under combined in-plane and lateral pressure loads

The aim of the present paper is to develop a semi-analytical method which can quickly and accurately compute the elastic–plastic large deflection response of welded steel or aluminum plating under a combination of biaxial compression/tension, biaxial in-plane bending, edge shear and lateral pressure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin-walled structures 2001-02, Vol.39 (2), p.125-152
Hauptverfasser: Paik, Jeom Kee, Thayamballi, Anil K., Lee, Sang Kon, Kang, Sung Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of the present paper is to develop a semi-analytical method which can quickly and accurately compute the elastic–plastic large deflection response of welded steel or aluminum plating under a combination of biaxial compression/tension, biaxial in-plane bending, edge shear and lateral pressure loads, until the ultimate limit state is reached. The post-weld initial imperfections (i.e. initial deflection and residual stresses) are included in the method as parameters of influence. It is assumed that the plating is simply supported at all (four) edges which are kept straight. A unique feature of the developed method is that geometric nonlinearity associated with large deflection response of plating under combined loads is treated by analytically solving the nonlinear governing differential equations of the elastic large deflection plate theory, while material nonlinearity due to plasticity is dealt with implicitly by a numerical procedure. This approach reduces the magnitude of numerical computations, resulting in a saving of modeling effort and computing time. As another contribution, this paper investigates and discusses the ultimate strength characteristics of plating, by varying the plate properties and load combinations, based on elastic–plastic large deflection analysis using the developed method.
ISSN:0263-8231
1879-3223
DOI:10.1016/S0263-8231(00)00058-6