Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell
To elucidate the gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cells after long cycling, we developed a device which can accurately determine the volume of generated gas in the cell. Experiments on Li x C 6/Li 1− x CoO 2 cells using electrolytes such as 1 M LiPF...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 1999-09, Vol.81, p.715-719 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To elucidate the gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cells after long cycling, we developed a device which can accurately determine the volume of generated gas in the cell. Experiments on Li
x
C
6/Li
1−
x
CoO
2 cells using electrolytes such as 1 M LiPF
6 in propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) are presented and discussed. In the nominal voltage range (4.2–2.5 V), compositional change due mainly to ester exchange reaction occurs, and gaseous products in the cell are little. Generated gas volume and compositional change in the electrolyte are detected largely in overcharged cells, and we discussed that gas generation due to electrolyte decomposition involves different decomposition reactions in overcharged and overdischarged cells. |
---|---|
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/S0378-7753(98)00234-1 |