Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
Rotating instabilities (RIs) have been observed in axial flow fans and centrifugal compressors as well as in low-speed and high-speed axial compressors. They are responsible for the excitation of high amplitude rotor blade vibrations and noise generation. This flow phenomenon moves relative to the r...
Gespeichert in:
Veröffentlicht in: | Journal of turbomachinery 2001-07, Vol.123 (3), p.453-460 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rotating instabilities (RIs) have been observed in axial flow fans and centrifugal compressors as well as in low-speed and high-speed axial compressors. They are responsible for the excitation of high amplitude rotor blade vibrations and noise generation. This flow phenomenon moves relative to the rotor blades and causes periodic vortex separations at the blade tips and an axial reversed flow through the tip clearance of the rotor blades. The paper describes experimental investigations of RIs in the Dresden Low-Speed Research Compressor (LSRC). The objective is to show that the fluctuation of the blade tip vortex is responsible for the origination of this flow phenomenon. RIs have been found at operating points near the stability limit of the compressor with relatively large tip clearance of the rotor blades. The application of time-resolving sensors in both fixed and rotating frame of reference enables a detailed description of the circumferential structure and the spatial development of this unsteady flow phenomenon, which is limited to the blade tip region. Laser-Doppler-anemometry (LDA) within the rotor blade passages and within the tip clearance as well as unsteady pressure measurements on the rotor blades show the structure of the blade tip vortex. It will be shown that the periodical interaction of the blade tip vortex of one blade with the flow at the adjacent blade is responsible for the generation of a rotating structure with high mode orders, termed a rotating instability. |
---|---|
ISSN: | 0889-504X 1528-8900 |
DOI: | 10.1115/1.1370160 |