Elevating Surface-Enhanced Infrared Absorption with Quantum Mechanical Effects of Plasmonic Nanocavities

Plasmonic nanocavities, with the ability to localize and concentrate light into nanometer-scale dimensions, have been widely used for ultrasensitive spectroscopy, biosensing, and photodetection. However, as the nanocavity gap approaches the subnanometer length scale, plasmonic enhancement, together...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2022-08, Vol.22 (15), p.6083-6090
Hauptverfasser: Huang, Guangyan, Liu, Kaizhen, Shi, Guangyi, Guo, Qianqian, Li, Xiang, Liu, Zeke, Ma, Wanli, Wang, Tao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plasmonic nanocavities, with the ability to localize and concentrate light into nanometer-scale dimensions, have been widely used for ultrasensitive spectroscopy, biosensing, and photodetection. However, as the nanocavity gap approaches the subnanometer length scale, plasmonic enhancement, together with plasmonic enhanced optical processes, turns to quenching because of quantum mechanical effects. Here, instead of quenching, we show that quantum mechanical effects of plasmonic nanocavities can elevate surface-enhanced infrared absorption (SEIRA) of molecular moieties. The plasmonic nanocavities, nanojunctions of gold and cadmium oxide nanoparticles, support prominent mid-infrared plasmonic resonances and enable SEIRA of an alkanethiol monolayer (CH3(CH2) n−1SH, n = 3–16). With a subnanometer cavity gap (n < 6), plasmonic resonances turn to blue shift and the SEIRA signal starts a pronounced increase, benefiting from the quantum tunneling effect across the plasmonic nanocavities. Our findings demonstrate the new possibility of optimizing the field enhancement and SEIRA sensitivity of mid-infrared plasmonic nanocavities.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.2c01042