Hydrazine Energy Storage: Displacing N2 H4 from the Metal Coordination Sphere

Hydrogen carriers, such as hydrazine (N2 H4 ), may facilitate long duration energy storage, a vital component for resilient grids by enabling more renewable energy generation. Lanthanide coordination chemistry with N2 H4 as well as efforts to displace N2 H4 from the metal coordination sphere to deve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2022-09, Vol.15 (18), p.e202200840
Hauptverfasser: McNeece, Andrew J, Jaroš, Adam, Batista, Enrique R, Yang, Ping, Scott, Brian L, Davis, Benjamin L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrogen carriers, such as hydrazine (N2 H4 ), may facilitate long duration energy storage, a vital component for resilient grids by enabling more renewable energy generation. Lanthanide coordination chemistry with N2 H4 as well as efforts to displace N2 H4 from the metal coordination sphere to develop an efficient catalytic production cycle were detailed. Modeling the equilibrium of different ligand coordination, it was predicted that strong sigma donor molecules would be required to displace N2 H4 . Monitoring competition experiments with nuclear magnetic resonance confirmed that trimethyl phosphine oxide, dimethylformamide, and dimethyl sulfoxide displaced N2 H4 in large or small lanthanide complexes.Hydrogen carriers, such as hydrazine (N2 H4 ), may facilitate long duration energy storage, a vital component for resilient grids by enabling more renewable energy generation. Lanthanide coordination chemistry with N2 H4 as well as efforts to displace N2 H4 from the metal coordination sphere to develop an efficient catalytic production cycle were detailed. Modeling the equilibrium of different ligand coordination, it was predicted that strong sigma donor molecules would be required to displace N2 H4 . Monitoring competition experiments with nuclear magnetic resonance confirmed that trimethyl phosphine oxide, dimethylformamide, and dimethyl sulfoxide displaced N2 H4 in large or small lanthanide complexes.
ISSN:1864-564X
1864-564X
DOI:10.1002/cssc.202200840