A fast algorithm for spatiotemporal signals recovery using arbitrary dictionaries with application to electrocardiographic imaging
This paper presents a method to solve a linear regression problem subject to group lasso and ridge penalisation when the model has a Kronecker structure. This model was developed to solve the inverse problem of electrocardiography using sparse signal representation over a redundant dictionary or fra...
Gespeichert in:
Veröffentlicht in: | Biomedical physics & engineering express 2022-11, Vol.8 (6), p.65010 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 65010 |
container_title | Biomedical physics & engineering express |
container_volume | 8 |
creator | Caracciolo, S F Caiafa, C F Martínez Pería, F D Arini, P D |
description | This paper presents a method to solve a linear regression problem subject to group
lasso
and ridge penalisation when the model has a Kronecker structure. This model was developed to solve the inverse problem of electrocardiography using sparse signal representation over a redundant dictionary or frame. The optimisation algorithm was performed using the block coordinate descent and proximal gradient descent methods. The explicit computation of the underlying Kronecker structure in the regression was avoided, reducing space and temporal complexity. We developed an algorithm that supports the use of arbitrary dictionaries to obtain solutions and allows a flexible group distribution. |
doi_str_mv | 10.1088/2057-1976/ac835b |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2693774663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2693774663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-8da650abfa248ccdba5187dcfd66ae3eec5036fd14444c33112d30716c1f292c3</originalsourceid><addsrcrecordid>eNp1kE1P3DAQhiNEpSLg3qNv9NAtdrxxkiNClCIhcaFnazK2s15lY3fs5ePaX15HWyEOxRd7rPd9NHqq6ovg3wXvusuaN-1K9K26BOxkMxxVJ29fx-_en6vzlLacc6FqpfrmpPpzxRykzGAaA_m82TEXiKUI2YdsdzEQTCz5cYYpMbIYniy9sn3y88iABp8Jymw8lvwM5G1izwXDIMbJ40KZWQ7MThYzBQQyPowEceOR-R2MhXNWfXKFbs__3afVrx83j9c_V_cPt3fXV_crrPsurzoDquEwOKjXHaIZoBFda9AZpcBKa7HhUjkj1uWglELURvJWKBSu7muUp9XXAzdS-L23KeudT2inCWYb9knXqpdtu1ZKlig_RJFCSmSdjlS2pVctuF6M60WpXpTqg_FSuThUfIh6G_a0GNNDtC-600rzsnvpRuNK8tt_kh-C_wKx_pOn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693774663</pqid></control><display><type>article</type><title>A fast algorithm for spatiotemporal signals recovery using arbitrary dictionaries with application to electrocardiographic imaging</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Caracciolo, S F ; Caiafa, C F ; Martínez Pería, F D ; Arini, P D</creator><creatorcontrib>Caracciolo, S F ; Caiafa, C F ; Martínez Pería, F D ; Arini, P D</creatorcontrib><description>This paper presents a method to solve a linear regression problem subject to group
lasso
and ridge penalisation when the model has a Kronecker structure. This model was developed to solve the inverse problem of electrocardiography using sparse signal representation over a redundant dictionary or frame. The optimisation algorithm was performed using the block coordinate descent and proximal gradient descent methods. The explicit computation of the underlying Kronecker structure in the regression was avoided, reducing space and temporal complexity. We developed an algorithm that supports the use of arbitrary dictionaries to obtain solutions and allows a flexible group distribution.</description><identifier>ISSN: 2057-1976</identifier><identifier>EISSN: 2057-1976</identifier><identifier>DOI: 10.1088/2057-1976/ac835b</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>ECGI ; group lasso ; Kronecker product ; sparse regularization</subject><ispartof>Biomedical physics & engineering express, 2022-11, Vol.8 (6), p.65010</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-8da650abfa248ccdba5187dcfd66ae3eec5036fd14444c33112d30716c1f292c3</cites><orcidid>0000-0001-5437-6095 ; 0000-0002-6347-7186 ; 0000-0003-2181-0507 ; 0000-0002-5548-7528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2057-1976/ac835b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Caracciolo, S F</creatorcontrib><creatorcontrib>Caiafa, C F</creatorcontrib><creatorcontrib>Martínez Pería, F D</creatorcontrib><creatorcontrib>Arini, P D</creatorcontrib><title>A fast algorithm for spatiotemporal signals recovery using arbitrary dictionaries with application to electrocardiographic imaging</title><title>Biomedical physics & engineering express</title><addtitle>BPEX</addtitle><addtitle>Biomed. Phys. Eng. Express</addtitle><description>This paper presents a method to solve a linear regression problem subject to group
lasso
and ridge penalisation when the model has a Kronecker structure. This model was developed to solve the inverse problem of electrocardiography using sparse signal representation over a redundant dictionary or frame. The optimisation algorithm was performed using the block coordinate descent and proximal gradient descent methods. The explicit computation of the underlying Kronecker structure in the regression was avoided, reducing space and temporal complexity. We developed an algorithm that supports the use of arbitrary dictionaries to obtain solutions and allows a flexible group distribution.</description><subject>ECGI</subject><subject>group lasso</subject><subject>Kronecker product</subject><subject>sparse regularization</subject><issn>2057-1976</issn><issn>2057-1976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1P3DAQhiNEpSLg3qNv9NAtdrxxkiNClCIhcaFnazK2s15lY3fs5ePaX15HWyEOxRd7rPd9NHqq6ovg3wXvusuaN-1K9K26BOxkMxxVJ29fx-_en6vzlLacc6FqpfrmpPpzxRykzGAaA_m82TEXiKUI2YdsdzEQTCz5cYYpMbIYniy9sn3y88iABp8Jymw8lvwM5G1izwXDIMbJ40KZWQ7MThYzBQQyPowEceOR-R2MhXNWfXKFbs__3afVrx83j9c_V_cPt3fXV_crrPsurzoDquEwOKjXHaIZoBFda9AZpcBKa7HhUjkj1uWglELURvJWKBSu7muUp9XXAzdS-L23KeudT2inCWYb9knXqpdtu1ZKlig_RJFCSmSdjlS2pVctuF6M60WpXpTqg_FSuThUfIh6G_a0GNNDtC-600rzsnvpRuNK8tt_kh-C_wKx_pOn</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Caracciolo, S F</creator><creator>Caiafa, C F</creator><creator>Martínez Pería, F D</creator><creator>Arini, P D</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5437-6095</orcidid><orcidid>https://orcid.org/0000-0002-6347-7186</orcidid><orcidid>https://orcid.org/0000-0003-2181-0507</orcidid><orcidid>https://orcid.org/0000-0002-5548-7528</orcidid></search><sort><creationdate>20221101</creationdate><title>A fast algorithm for spatiotemporal signals recovery using arbitrary dictionaries with application to electrocardiographic imaging</title><author>Caracciolo, S F ; Caiafa, C F ; Martínez Pería, F D ; Arini, P D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-8da650abfa248ccdba5187dcfd66ae3eec5036fd14444c33112d30716c1f292c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ECGI</topic><topic>group lasso</topic><topic>Kronecker product</topic><topic>sparse regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caracciolo, S F</creatorcontrib><creatorcontrib>Caiafa, C F</creatorcontrib><creatorcontrib>Martínez Pería, F D</creatorcontrib><creatorcontrib>Arini, P D</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical physics & engineering express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caracciolo, S F</au><au>Caiafa, C F</au><au>Martínez Pería, F D</au><au>Arini, P D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast algorithm for spatiotemporal signals recovery using arbitrary dictionaries with application to electrocardiographic imaging</atitle><jtitle>Biomedical physics & engineering express</jtitle><stitle>BPEX</stitle><addtitle>Biomed. Phys. Eng. Express</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>8</volume><issue>6</issue><spage>65010</spage><pages>65010-</pages><issn>2057-1976</issn><eissn>2057-1976</eissn><abstract>This paper presents a method to solve a linear regression problem subject to group
lasso
and ridge penalisation when the model has a Kronecker structure. This model was developed to solve the inverse problem of electrocardiography using sparse signal representation over a redundant dictionary or frame. The optimisation algorithm was performed using the block coordinate descent and proximal gradient descent methods. The explicit computation of the underlying Kronecker structure in the regression was avoided, reducing space and temporal complexity. We developed an algorithm that supports the use of arbitrary dictionaries to obtain solutions and allows a flexible group distribution.</abstract><pub>IOP Publishing</pub><doi>10.1088/2057-1976/ac835b</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5437-6095</orcidid><orcidid>https://orcid.org/0000-0002-6347-7186</orcidid><orcidid>https://orcid.org/0000-0003-2181-0507</orcidid><orcidid>https://orcid.org/0000-0002-5548-7528</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2057-1976 |
ispartof | Biomedical physics & engineering express, 2022-11, Vol.8 (6), p.65010 |
issn | 2057-1976 2057-1976 |
language | eng |
recordid | cdi_proquest_miscellaneous_2693774663 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | ECGI group lasso Kronecker product sparse regularization |
title | A fast algorithm for spatiotemporal signals recovery using arbitrary dictionaries with application to electrocardiographic imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20algorithm%20for%20spatiotemporal%20signals%20recovery%20using%20arbitrary%20dictionaries%20with%20application%20to%20electrocardiographic%20imaging&rft.jtitle=Biomedical%20physics%20&%20engineering%20express&rft.au=Caracciolo,%20S%20F&rft.date=2022-11-01&rft.volume=8&rft.issue=6&rft.spage=65010&rft.pages=65010-&rft.issn=2057-1976&rft.eissn=2057-1976&rft_id=info:doi/10.1088/2057-1976/ac835b&rft_dat=%3Cproquest_iop_j%3E2693774663%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693774663&rft_id=info:pmid/&rfr_iscdi=true |