A fast algorithm for spatiotemporal signals recovery using arbitrary dictionaries with application to electrocardiographic imaging

This paper presents a method to solve a linear regression problem subject to group lasso and ridge penalisation when the model has a Kronecker structure. This model was developed to solve the inverse problem of electrocardiography using sparse signal representation over a redundant dictionary or fra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical physics & engineering express 2022-11, Vol.8 (6), p.65010
Hauptverfasser: Caracciolo, S F, Caiafa, C F, Martínez Pería, F D, Arini, P D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a method to solve a linear regression problem subject to group lasso and ridge penalisation when the model has a Kronecker structure. This model was developed to solve the inverse problem of electrocardiography using sparse signal representation over a redundant dictionary or frame. The optimisation algorithm was performed using the block coordinate descent and proximal gradient descent methods. The explicit computation of the underlying Kronecker structure in the regression was avoided, reducing space and temporal complexity. We developed an algorithm that supports the use of arbitrary dictionaries to obtain solutions and allows a flexible group distribution.
ISSN:2057-1976
2057-1976
DOI:10.1088/2057-1976/ac835b