Ad hoc mobility management with uniform quorum systems

A distributed mobility management scheme using a class of uniform quorum systems (UQS) is proposed for ad hoc networks. In the proposed scheme, location databases are stored in the network nodes themselves, which form a self-organizing virtual backbone within the flat network structure. The database...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on networking 1999-04, Vol.7 (2), p.228-240
Hauptverfasser: Haas, Z.J., Liang, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A distributed mobility management scheme using a class of uniform quorum systems (UQS) is proposed for ad hoc networks. In the proposed scheme, location databases are stored in the network nodes themselves, which form a self-organizing virtual backbone within the flat network structure. The databases are dynamically organized into quorums, every two of which intersect at a constant number of databases. Upon location update or call arrival, a mobile's location information is written to or read from all the databases of a quorum, chosen in a nondeterministic manner. Compared with a conventional scheme [such as the use of home location register (HLR)] with fixed associations, this scheme is more suitable for ad hoc networks, where the connectivity of the nodes with the rest of the network can be intermittent and sporadic and the databases are relatively unstable. We introduce UQS, where the size of the quorum intersection is a design parameter that can be tuned to adapt to the traffic and mobility patterns of the network nodes. We propose the construction of UQS through the balanced incomplete block designs. The average cost, due to call loss and location updates using such systems, is analyzed in the presence of database disconnections. Based on the average cost, we investigate the tradeoff between the system reliability and the cost of location updates in the UQS scheme. The problem of optimizing the quorum size under different network traffic and mobility patterns is treated numerically. A dynamic and distributed HLR scheme, as a limiting case of the UQS, is also analyzed and shown to be suboptimal in general. It is also shown that partitioning of the network is sometimes necessary to reduce the cost of mobility management.
ISSN:1063-6692
1558-2566
DOI:10.1109/90.769770