Molybdenum Nitride Porous Prisms with a Strong Plasmon Resonance Effect in the Visible Region for Surface-Enhanced Raman Spectroscopy
In surface-enhanced Raman spectroscopy (SERS) detection, the structure of the Raman-scattering substrate is critical to the sensitivity and stability of the detector. Herein, molybdenum nitride (MoN) porous structures with a well-defined hexagonal prism shape were synthesized via a precursor nitridi...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2022-07, Vol.13 (29), p.6777-6782 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In surface-enhanced Raman spectroscopy (SERS) detection, the structure of the Raman-scattering substrate is critical to the sensitivity and stability of the detector. Herein, molybdenum nitride (MoN) porous structures with a well-defined hexagonal prism shape were synthesized via a precursor nitriding route. As a typical metallic transition-metal nitride (TMN), these molybdenum nitride porous hexagonal prisms exhibit a rare strong SPR effect in the visible region, with a resonance peak centered at 534 nm. Benefiting from the strong SPR effect and their huge surface area and porosity, these MoN porous hexagonal prisms exhibit surface-enhanced Raman scattering effects comparable to those of noble metals, with a Raman enhancement factor of 5.5 × 106. More importantly, these MoN SERS substrates exhibit ultrahigh chemical stabilities that noble metal and semiconductor substrates do not possess, which can prevent corrosion by strong acids, alkalis, and high-temperature oxidation. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.2c01558 |