A Nanounit Strategy Disrupts Energy Metabolism and Alleviates Immunosuppression for Cancer Therapy
Aberrant energy metabolism not only endows tumor cells with unlimited proliferative capacity but also contributes to the establishment of the glucose-deficient/lactate-rich immunosuppressive tumor microenvironment (ITM) impairing antitumor immunity. Herein, a novel metabolic nanoregulator (D/B/CQ@ZI...
Gespeichert in:
Veröffentlicht in: | Nano letters 2022-08, Vol.22 (15), p.6418-6427 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aberrant energy metabolism not only endows tumor cells with unlimited proliferative capacity but also contributes to the establishment of the glucose-deficient/lactate-rich immunosuppressive tumor microenvironment (ITM) impairing antitumor immunity. Herein, a novel metabolic nanoregulator (D/B/CQ@ZIF-8@CS) was developed by enveloping 2-deoxy-d-glucose (2-DG), BAY-876, and chloroquine (CQ) into zeolitic imidazolate framework-8 (ZIF-8) to simultaneously deprive the energy/nutrition supply of tumor cells and relieve the ITM for synergetic tumor starvation-immunotherapy. Aerobic glycolysis, glucose uptake, and autophagy flux could be concurrently blocked by D/B/CQ@ZIF-8@CS, cutting off the nutrition/energy supply and the source of lactate. Furthermore, inhibition of glucose uptake and aerobic glycolysis could effectively reverse the glucose-deficient/lactate-rich ITM, thus functionally inactivating regulatory T cells and augmenting anti-CTLA-4 immunotherapy. Such a two-pronged strategy would provide new insights for the design of metabolic intervention-based synergistic cancer therapy. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.2c02475 |