Integrated thermal and magnetic susceptibility modeling for air-motion artifact correction in proton resonance frequency shift thermometry
Hyperthermia treatments are successful adjuvants to conventional cancer therapies in which the tumor is sensitized by heating. To monitor and guide the hyperthermia treatment, measuring the tumor and healthy tissue temperature is important. The typical clinical practice heavily relies on intralumina...
Gespeichert in:
Veröffentlicht in: | International journal of hyperthermia 2022-12, Vol.39 (1), p.967-976 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hyperthermia treatments are successful adjuvants to conventional cancer therapies in which the tumor is sensitized by heating. To monitor and guide the hyperthermia treatment, measuring the tumor and healthy tissue temperature is important. The typical clinical practice heavily relies on intraluminal probe measurements that are uncomfortable for the patient and only provide spatially sparse temperature information. A solution may be offered through recent advances in magnetic resonance thermometry, which allows for three-dimensional internal temperature measurements. However, these measurements are not widely used in the pelvic region due to a low signal-to-noise ratio and presence of image artifacts.
To advance the clinical integration of magnetic resonance-guided cancer treatments, we consider the problem of removing air-motion-induced image artifacts. Thereto, we propose a new combined thermal and magnetic susceptibility model-based temperature estimation scheme that uses temperature estimates to improve the removal of air-motion-induced image artifacts. The method is experimentally validated using a dedicated phantom that enables the controlled injection of air-motion artifacts and with in vivo thermometry from a clinical hyperthermia treatment.
We showed, using probe measurements in a heated phantom, that our method reduced the mean absolute error (MAE) by 58% compared to the state-of-the-art near a moving air volume. Moreover, with in vivo thermometry our method obtained a MAE reduction between 17% and 95% compared to the state-of-the-art.
We expect that the combined thermal and magnetic susceptibility modeling used in model-based temperature estimation can significantly improve the monitoring in hyperthermia treatments and enable feedback strategies to further improve MR-guided hyperthermia cancer treatments. |
---|---|
ISSN: | 0265-6736 1464-5157 |
DOI: | 10.1080/02656736.2022.2094475 |