A comparison of fire retarded and non-fire retarded wood-based wall linings exposed to fire in an enclosure

Full‐scale fire experiments were carried out in an ISO room to study the behaviour of commonly used cellulosic lining materials in real fire conditions. In addition to the temperature measurements recommended by the ISO 9705, temperature recordings were made at each node of grid lines on the wall li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fire and materials 1999-01, Vol.23 (1), p.17-25
Hauptverfasser: Shields, T. J., Silcock, G. W. H., Moghaddam, A. Z., Azhakesan, M. A., Zhang, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Full‐scale fire experiments were carried out in an ISO room to study the behaviour of commonly used cellulosic lining materials in real fire conditions. In addition to the temperature measurements recommended by the ISO 9705, temperature recordings were made at each node of grid lines on the wall lining surfaces. Four lining materials were chosen to represent different types of products and the surface spread of classifications determined using the BS 476 Part 7 flame spread test environment. The linings included fire retarded, melamine faced and non‐fire retarded boards which facilitated a comparative study of the behaviour of these materials with respect to ignition, flame spread, heat release rate and time to flashover. Corner fire scenarios were used in all the experiments. A T shape flame spread pattern on the surface of the two adjacent walls was observed prior to flashover. Prior to the onset of flashover conditions, downward opposed flow surface flame spread to the wall/ceiling intersection. For the non‐retarded wood based materials, such as plywood and medium density fibre board, flashover conditions occurred approximately 4 min after the start of the experiment. However, the fire retarded chipboard ignition was delayed by some 11 min 45 s after which flame spread was very rapid with flashover occurring within a further 1 min 45 s. An explanation for this particular behaviour is the considerable pre‐heating which occurred during the pre‐ignition period. For the fire retarded linings, much higher surface temperatures were recorded compared with those for non‐fire retarded linings. It was found that the areas of the fire retarded linings facing the source flame suffered extensive pyrolysis and charring which penetrated to the rear surface of the lining. Copyright © 1999 John Wiley & Sons, Ltd.
ISSN:0308-0501
1099-1018
DOI:10.1002/(SICI)1099-1018(199901/02)23:1<17::AID-FAM665>3.0.CO;2-V