Evaluation of Fructo‑, Inulin‑, and Galacto-Oligosaccharides on the Maillard Reaction Products in Model Systems with Whey Protein

The present study aimed to investigate the effects of fructo-, inulin-, and galacto-oligosaccharides (FOS, IOS, and GOS) on forming the Maillard reaction products such as browning, α-dicarbonyl compounds, and advanced glycation end products (AGEs). The model solutions at pH 6.8 containing each carbo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2022-07, Vol.70 (29), p.9154-9165
Hauptverfasser: Nomi, Yuri, Sato, Tae, Mori, Yuki, Matsumoto, Hitoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study aimed to investigate the effects of fructo-, inulin-, and galacto-oligosaccharides (FOS, IOS, and GOS) on forming the Maillard reaction products such as browning, α-dicarbonyl compounds, and advanced glycation end products (AGEs). The model solutions at pH 6.8 containing each carbohydrate (mono-, di-, and oligosaccharides) and whey protein were incubated at 50 °C for 8 weeks. In the IOS model, sugars of DP3 or larger were significantly decreased at 4 weeks, whereas at 6 weeks in the FOS model. The residual amount of GOS after 8 weeks was higher than FOS and IOS; however, a large amount of 3-deoxyglucosone was formed compared to the other models. N ε-Carboxymethyllysine (CML) concentrations in oligosaccharide models were about half of those in monosaccharide and lactose models. The highest concentrations of glyoxal- and methylglyoxal-derived hydroimidazolones 3 (G-H3 and MG-H3) were observed in the IOS model, indicating the involvement of fructose units linked by β-2 → 1 bonds. G-H3 and MG-H3 quantification could be a useful indicator to reflect the modification of an arginine residue by fructose if used acid-hydrolysis for AGE analysis. CML, G-H3, and MG-H3 were considerably formed even in the FOS model, which has no reducing terminal site, suggesting that degradation products of oligosaccharides probably participated in the formation of AGEs.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.2c03197