New Model for Shear Failure of RC Interior Beam-Column Connections

The primary objective of this study is to point out an irrationality in the existing models for shear failure, adopted by current design codes for reinforced concrete (RC) monolithic interior beam-column connections. To investigate this issue, 20 tests of RC interior beam-column connections exhibiti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural engineering (New York, N.Y.) N.Y.), 2001-02, Vol.127 (2), p.152-160
1. Verfasser: Shiohara, Hitoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The primary objective of this study is to point out an irrationality in the existing models for shear failure, adopted by current design codes for reinforced concrete (RC) monolithic interior beam-column connections. To investigate this issue, 20 tests of RC interior beam-column connections exhibiting shear failure are reexamined. Test data indicated that joint shear stress is not proportional to story shear. Joint shear increased until the end of the test in most specimens, even if the joint shear deformation apparently increased and the story shear decreased. Moment in section at the beam end decreased due to a reduction in distance between stress resultants at the column face. The cause of the deterioration of story shear is shown to originate from a finite upper limit of anchorage capacity of beam longitudinal reinforcements passing through the beam-column connection. A new mathematical model is introduced for shear failure of the beam-column connection to reflect this behavior.
ISSN:0733-9445
1943-541X
DOI:10.1061/(ASCE)0733-9445(2001)127:2(152)