Aerobiological modelling II: A review of long-range transport models

The long-range atmospheric transport models of pollen and fungal spores require four modules for their development: (i) Meteorological module: which contain the meteorological model, and it can be coupled to transport model with the same output configuration (spatio-temporal resolution), or uncouple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-11, Vol.845, p.157351-157351, Article 157351
Hauptverfasser: Vélez-Pereira, Andrés M., De Linares, Concepción, Belmonte, Jordina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The long-range atmospheric transport models of pollen and fungal spores require four modules for their development: (i) Meteorological module: which contain the meteorological model, and it can be coupled to transport model with the same output configuration (spatio-temporal resolution), or uncoupled does not necessarily have the same output parameters. (ii) Emission module: settles the mass fluxes of bioaerosol, it can be done with a complex parameterization integrating phenological models and meteorological factors or by a simple emission factor. (iii) Sources of emission module, specifically refers to forestry/agronomy maps or, in the case of herbs and fungi, to potential geographical areas of emission. Obtaining the highest possible resolution in these maps allows establishing greater reliability in the modelling. (iv) Atmospheric transport module, with its respective established output parameters. The review and subsequent analysis presented in this article, were performed on published electronic scientific articles from 1998 to 2016. Of a total of 101 models applied found in 64 articles, 33 % performed forward modelling (using 15 different models) and 67 % made backward modelling (with three different models). The 88 % of the cases were applied to pollen (13 taxa) and 12 % to fungal spores (3 taxa). Regarding the emission module, 22 % used parametrization (four different parameters) and 10 % emission factors. The most used transport model was HYSPLIT (59 %: 56 % backward and 3 % forward) following by SILAM 10 % (all forward). Main conclusions were that the models of long-range transport of pollen and fungal spores had high technical-scientific requirements to development and that the major limitations were the establishment of the flow and the source of the emission. [Display omitted] •There are few aerobiological studies based on LRT due to the high volume of data and computational requirements needed.•One important difficulty is setting the emission sources and the flow rate of the pollen and, specilly, the fungal spores.•Analytical studies relating the biometeorology dynamics and the active or passive release of pollen/spores are required.•Backward models are more used than forward models since they are not limited by setting the emission sources and the flows.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2022.157351