Sensitive CTC analysis and dual-mode MRI/FL diagnosis based on a magnetic core-shell aptasensor

Synergizing the sensitive circulating tumor cell (CTC) capture, detection, release and the specific magnetic resonance/fluorescence (MR/FL) imaging for accurate cancer diagnosis is of great importance for cancer treatment. Herein, EcoR1-responsive complementary pairing of two ssDNA with a fluorescen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2022-11, Vol.215, p.114530-114530, Article 114530
Hauptverfasser: Wang, Yi, Huo, Taotao, Du, Yilin, Qian, Min, Lin, Chenteng, Nie, Huifang, Li, Wenshuai, Hao, Tingting, Zhang, Xiaoyi, Lin, Ning, Huang, Rongqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synergizing the sensitive circulating tumor cell (CTC) capture, detection, release and the specific magnetic resonance/fluorescence (MR/FL) imaging for accurate cancer diagnosis is of great importance for cancer treatment. Herein, EcoR1-responsive complementary pairing of two ssDNA with a fluorescent P0 aptamer, which can specifically bind with the overexpressed MUC1 protein on cancer cells, was covalently modified to SiO2@C-coated magnetic nanoparticles for preparing a special nanoparticle-mediated FL turn-on aptasensor (FSC-D-P0). This aptasensor can selectively capture/enrich CTC and thus achieve sensitive CTC detection/imaging in even the blood due to its stable targeting, unique magnetic properties and the regulated interactions between the quencher and the fluorescent groups. Meanwhile, FSC-D-P0 can release the captured CTC for further downstream analysis upon the EcoR1 enzyme-triggered cleavage of the double-stranded DNA (dsDNA). Most importantly, this aptasensor can distinctly avoid false positivity of MRI via multiple targeting mechanisms. Thus, the sensitive CTC capture, detection, release and accurate MR/FL imaging were synergistically combined into a single platform with good biocompatibility, promising a robust pattern for clinical tumor diagnosis in vitro and in vivo.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2022.114530