Structural dynamics of light harvesting proteins, photosynthetic membranes, and cells observed by spectral editing solid-state NMR

Photosynthetic light-harvesting complexes have a remarkable capacity to perform robust photo-physics at ambient temperatures and in fluctuating environments. Protein conformational dynamics and membrane mobility are processes that contribute to the light-harvesting efficiencies and control photoprot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Chemical Physics 2022-07, Vol.157 (2), p.025101-025101
1. Verfasser: Pandit, Anjali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photosynthetic light-harvesting complexes have a remarkable capacity to perform robust photo-physics at ambient temperatures and in fluctuating environments. Protein conformational dynamics and membrane mobility are processes that contribute to the light-harvesting efficiencies and control photoprotective responses. This short review describes the application of magic angle spinning nuclear magnetic resonance (NMR) spectroscopy for characterizing the structural dynamics of pigment, protein, and thylakoid membrane components related to light harvesting and photoprotection. I will discuss the use of dynamics-based spectral editing solid-state NMR for distinguishing rigid and mobile components and assessing protein, pigment, and lipid dynamics on sub-nanosecond to millisecond timescales. Dynamic spectral editing NMR has been applied to investigate light-harvesting complex II protein conformational dynamics inside lipid bilayers and in native membranes. Furthermore, we used the NMR approach to assess thylakoid membrane dynamics. Finally, it is shown that dynamics-based spectral editing NMR for reducing spectral complexity by filtering motion-dependent signals enabled us to follow processes in live photosynthetic cells.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0094446