Designing thermal radiation metamaterials via a hybrid adversarial autoencoder and Bayesian optimization

Designing thermal radiation metamaterials is challenging especially for problems with high degrees of freedom and complex objectives. In this Letter, we develop a hybrid materials informatics approach which combines the adversarial autoencoder and Bayesian optimization to design narrowband thermal e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2022-07, Vol.47 (14), p.3395-3398
Hauptverfasser: Zhu, Dezhao, Guo, Jiang, Yu, Gang, Zhao, C. Y., Wang, Hong, Ju, Shenghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Designing thermal radiation metamaterials is challenging especially for problems with high degrees of freedom and complex objectives. In this Letter, we develop a hybrid materials informatics approach which combines the adversarial autoencoder and Bayesian optimization to design narrowband thermal emitters at different target wavelengths. With only several hundreds of training data sets, new structures with optimal properties can be quickly determined in a compressed two-dimensional latent space. This enables the optimal design by calculating far less than 0.001% of the total candidate structures, which greatly decreases the design period and cost. The proposed design framework can be easily extended to other thermal radiation metamaterials design with higher dimensional features.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.453442