Hyperspectral image super-resolution based on the transfer of both spectra and multi-level features
Existing hyperspectral image (HSI) super-resolution methods fusing a high-resolution RGB image (HR-RGB) and a low-resolution HSI (LR-HSI) always rely on spatial degradation and handcrafted priors, which hinders their practicality. To address these problems, we propose a novel, to the best of our kno...
Gespeichert in:
Veröffentlicht in: | Optics letters 2022-07, Vol.47 (14), p.3431-3434 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Existing hyperspectral image (HSI) super-resolution methods fusing a high-resolution RGB image (HR-RGB) and a low-resolution HSI (LR-HSI) always rely on spatial degradation and handcrafted priors, which hinders their practicality. To address these problems, we propose a novel, to the best of our knowledge, method with two transfer models: a window-based linear mixing (W-LM) model and a feature transfer model. Specifically, W-LM initializes a high-resolution HSI (HR-HSI) by transferring the spectra from the LR-HSI to the HR-RGB. By using the proposed feature transfer model, the HR-RGB multi-level features extracted by a pre-trained convolutional neural network (CNN) are then transferred to the initialized HR-HSI. The proposed method fully exploits spectra of LR-HSI and multi-level features of HR-RGB and achieves super-resolution without requiring the spatial degradation model and any handcrafted priors. The experimental results for 32 × super-resolution on two public datasets and our real image set demonstrate the proposed method outperforms eight state-of-the-art existing methods. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.463160 |