The Computational Complexity of Some Problems of Linear Algebra

We consider the computational complexity of some problems dealing with matrix rank. Let E, S be subsets of a commutative ring R. Let x1, x2, …, xt be variables. Given a matrix M=M(x1, x2, …, xt) with entries chosen from E∪{x1, x2, …, xt}, we want to determine maxrankS(M)=max(a1, a2, …, at)∈St rank M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer and system sciences 1999-06, Vol.58 (3), p.572-596
Hauptverfasser: Buss, Jonathan F, Frandsen, Gudmund S, Shallit, Jeffrey O
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 596
container_issue 3
container_start_page 572
container_title Journal of computer and system sciences
container_volume 58
creator Buss, Jonathan F
Frandsen, Gudmund S
Shallit, Jeffrey O
description We consider the computational complexity of some problems dealing with matrix rank. Let E, S be subsets of a commutative ring R. Let x1, x2, …, xt be variables. Given a matrix M=M(x1, x2, …, xt) with entries chosen from E∪{x1, x2, …, xt}, we want to determine maxrankS(M)=max(a1, a2, …, at)∈St rank M(a1, a2, …, at) and minrankS(M)=min(a1, a2, …, at)∈St rank M(a1, a2, …, at). There are also variants of these problems that specify more about the structure of M, or instead of asking for the minimum or maximum rank, they ask if there is some substitution of the variables that makes the matrix invertible or noninvertible. Depending on E, S, and which variant is studied, the complexity of these problems can range from polynomial-time solvable to random polynomial-time solvable to NP-complete to PSPACE-solvable to unsolvable. An approximation version of the minrank problem is shown to be MAXSNP-hard.
doi_str_mv 10.1006/jcss.1998.1608
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26899740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022000098916087</els_id><sourcerecordid>26899740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-e55bb37b8998d2e4bc90fca7f2296435022a65aef93712fd79eb40a2b9b2b20e3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKtXz3vytusk-5mTlKJVKChYzyHJzmpKdlOTrdj_3qz16lyGGd57PH6EXFPIKEB1u9UhZJTzJqMVNCdkRoFDympWnJIZAGMpxDknFyFsASgtq3xG7jYfmCxdv9uPcjRukPb3svhtxkPiuuTV9Zi8eKcs9mF6rM2A0icL-47Ky0ty1kkb8Opvz8nbw_1m-Ziun1dPy8U61QXLxxTLUqm8Vk2s1zIslObQaVl3jPGqyMvYTlalxI7nNWVdW3NUBUimuGKKAeZzcnPM3Xn3uccwit4EjdbKAd0-CFbF6LqAKMyOQu1dCB47sfOml_4gKIiJk5g4iYmTmDhFQ3M0YKz_ZdCLoA0OGlvjUY-ideY_6w8H6G6r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26899740</pqid></control><display><type>article</type><title>The Computational Complexity of Some Problems of Linear Algebra</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Buss, Jonathan F ; Frandsen, Gudmund S ; Shallit, Jeffrey O</creator><creatorcontrib>Buss, Jonathan F ; Frandsen, Gudmund S ; Shallit, Jeffrey O</creatorcontrib><description>We consider the computational complexity of some problems dealing with matrix rank. Let E, S be subsets of a commutative ring R. Let x1, x2, …, xt be variables. Given a matrix M=M(x1, x2, …, xt) with entries chosen from E∪{x1, x2, …, xt}, we want to determine maxrankS(M)=max(a1, a2, …, at)∈St rank M(a1, a2, …, at) and minrankS(M)=min(a1, a2, …, at)∈St rank M(a1, a2, …, at). There are also variants of these problems that specify more about the structure of M, or instead of asking for the minimum or maximum rank, they ask if there is some substitution of the variables that makes the matrix invertible or noninvertible. Depending on E, S, and which variant is studied, the complexity of these problems can range from polynomial-time solvable to random polynomial-time solvable to NP-complete to PSPACE-solvable to unsolvable. An approximation version of the minrank problem is shown to be MAXSNP-hard.</description><identifier>ISSN: 0022-0000</identifier><identifier>EISSN: 1090-2724</identifier><identifier>DOI: 10.1006/jcss.1998.1608</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of computer and system sciences, 1999-06, Vol.58 (3), p.572-596</ispartof><rights>1999 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-e55bb37b8998d2e4bc90fca7f2296435022a65aef93712fd79eb40a2b9b2b20e3</citedby><cites>FETCH-LOGICAL-c423t-e55bb37b8998d2e4bc90fca7f2296435022a65aef93712fd79eb40a2b9b2b20e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jcss.1998.1608$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Buss, Jonathan F</creatorcontrib><creatorcontrib>Frandsen, Gudmund S</creatorcontrib><creatorcontrib>Shallit, Jeffrey O</creatorcontrib><title>The Computational Complexity of Some Problems of Linear Algebra</title><title>Journal of computer and system sciences</title><description>We consider the computational complexity of some problems dealing with matrix rank. Let E, S be subsets of a commutative ring R. Let x1, x2, …, xt be variables. Given a matrix M=M(x1, x2, …, xt) with entries chosen from E∪{x1, x2, …, xt}, we want to determine maxrankS(M)=max(a1, a2, …, at)∈St rank M(a1, a2, …, at) and minrankS(M)=min(a1, a2, …, at)∈St rank M(a1, a2, …, at). There are also variants of these problems that specify more about the structure of M, or instead of asking for the minimum or maximum rank, they ask if there is some substitution of the variables that makes the matrix invertible or noninvertible. Depending on E, S, and which variant is studied, the complexity of these problems can range from polynomial-time solvable to random polynomial-time solvable to NP-complete to PSPACE-solvable to unsolvable. An approximation version of the minrank problem is shown to be MAXSNP-hard.</description><issn>0022-0000</issn><issn>1090-2724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKtXz3vytusk-5mTlKJVKChYzyHJzmpKdlOTrdj_3qz16lyGGd57PH6EXFPIKEB1u9UhZJTzJqMVNCdkRoFDympWnJIZAGMpxDknFyFsASgtq3xG7jYfmCxdv9uPcjRukPb3svhtxkPiuuTV9Zi8eKcs9mF6rM2A0icL-47Ky0ty1kkb8Opvz8nbw_1m-Ziun1dPy8U61QXLxxTLUqm8Vk2s1zIslObQaVl3jPGqyMvYTlalxI7nNWVdW3NUBUimuGKKAeZzcnPM3Xn3uccwit4EjdbKAd0-CFbF6LqAKMyOQu1dCB47sfOml_4gKIiJk5g4iYmTmDhFQ3M0YKz_ZdCLoA0OGlvjUY-ideY_6w8H6G6r</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Buss, Jonathan F</creator><creator>Frandsen, Gudmund S</creator><creator>Shallit, Jeffrey O</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990601</creationdate><title>The Computational Complexity of Some Problems of Linear Algebra</title><author>Buss, Jonathan F ; Frandsen, Gudmund S ; Shallit, Jeffrey O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-e55bb37b8998d2e4bc90fca7f2296435022a65aef93712fd79eb40a2b9b2b20e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buss, Jonathan F</creatorcontrib><creatorcontrib>Frandsen, Gudmund S</creatorcontrib><creatorcontrib>Shallit, Jeffrey O</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computer and system sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buss, Jonathan F</au><au>Frandsen, Gudmund S</au><au>Shallit, Jeffrey O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Computational Complexity of Some Problems of Linear Algebra</atitle><jtitle>Journal of computer and system sciences</jtitle><date>1999-06-01</date><risdate>1999</risdate><volume>58</volume><issue>3</issue><spage>572</spage><epage>596</epage><pages>572-596</pages><issn>0022-0000</issn><eissn>1090-2724</eissn><abstract>We consider the computational complexity of some problems dealing with matrix rank. Let E, S be subsets of a commutative ring R. Let x1, x2, …, xt be variables. Given a matrix M=M(x1, x2, …, xt) with entries chosen from E∪{x1, x2, …, xt}, we want to determine maxrankS(M)=max(a1, a2, …, at)∈St rank M(a1, a2, …, at) and minrankS(M)=min(a1, a2, …, at)∈St rank M(a1, a2, …, at). There are also variants of these problems that specify more about the structure of M, or instead of asking for the minimum or maximum rank, they ask if there is some substitution of the variables that makes the matrix invertible or noninvertible. Depending on E, S, and which variant is studied, the complexity of these problems can range from polynomial-time solvable to random polynomial-time solvable to NP-complete to PSPACE-solvable to unsolvable. An approximation version of the minrank problem is shown to be MAXSNP-hard.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jcss.1998.1608</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0000
ispartof Journal of computer and system sciences, 1999-06, Vol.58 (3), p.572-596
issn 0022-0000
1090-2724
language eng
recordid cdi_proquest_miscellaneous_26899740
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
title The Computational Complexity of Some Problems of Linear Algebra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Computational%20Complexity%20of%20Some%20Problems%20of%20Linear%20Algebra&rft.jtitle=Journal%20of%20computer%20and%20system%20sciences&rft.au=Buss,%20Jonathan%20F&rft.date=1999-06-01&rft.volume=58&rft.issue=3&rft.spage=572&rft.epage=596&rft.pages=572-596&rft.issn=0022-0000&rft.eissn=1090-2724&rft_id=info:doi/10.1006/jcss.1998.1608&rft_dat=%3Cproquest_cross%3E26899740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26899740&rft_id=info:pmid/&rft_els_id=S0022000098916087&rfr_iscdi=true