The Computational Complexity of Some Problems of Linear Algebra

We consider the computational complexity of some problems dealing with matrix rank. Let E, S be subsets of a commutative ring R. Let x1, x2, …, xt be variables. Given a matrix M=M(x1, x2, …, xt) with entries chosen from E∪{x1, x2, …, xt}, we want to determine maxrankS(M)=max(a1, a2, …, at)∈St rank M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer and system sciences 1999-06, Vol.58 (3), p.572-596
Hauptverfasser: Buss, Jonathan F, Frandsen, Gudmund S, Shallit, Jeffrey O
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the computational complexity of some problems dealing with matrix rank. Let E, S be subsets of a commutative ring R. Let x1, x2, …, xt be variables. Given a matrix M=M(x1, x2, …, xt) with entries chosen from E∪{x1, x2, …, xt}, we want to determine maxrankS(M)=max(a1, a2, …, at)∈St rank M(a1, a2, …, at) and minrankS(M)=min(a1, a2, …, at)∈St rank M(a1, a2, …, at). There are also variants of these problems that specify more about the structure of M, or instead of asking for the minimum or maximum rank, they ask if there is some substitution of the variables that makes the matrix invertible or noninvertible. Depending on E, S, and which variant is studied, the complexity of these problems can range from polynomial-time solvable to random polynomial-time solvable to NP-complete to PSPACE-solvable to unsolvable. An approximation version of the minrank problem is shown to be MAXSNP-hard.
ISSN:0022-0000
1090-2724
DOI:10.1006/jcss.1998.1608