Enhanced Contactless Salt-Collecting Solar Desalination
Solar desalination is expected to solve the problem of global water shortage. Yet its stability is plagued by salt accumulation. Here, a paper-based thermal radiation-enabled evaporation system (TREES) is demonstrated to achieve sustainable and highly efficient salt-collecting desalination, featurin...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-07, Vol.14 (29), p.34151-34158 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solar desalination is expected to solve the problem of global water shortage. Yet its stability is plagued by salt accumulation. Here, a paper-based thermal radiation-enabled evaporation system (TREES) is demonstrated to achieve sustainable and highly efficient salt-collecting desalination, featuring a dynamic evaporation front based on the accumulated salt layer where water serves as its own absorber via energy down-conversion. When processing 7 wt % brine, it continuously evaporates water at a high rate2.25 L m–2 h–1 under 1 sun illuminationwhich is well beyond the input solar energy limit for over 366 h. It is revealed that such enhanced evaporation arises from the unique vertical evaporation wall of the paper-TREES, which captures the thermal energy from the heated bottom efficiently and gains extra energy from the warmer environment. These findings provide novel insights into the design of next-generation salt-harvesting solar evaporators and take a step further to advance their applications in green desalination. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.2c09063 |