An efficient implementation of the backward greedy algorithm for sparse signal reconstruction
Recent work in sparse signal reconstruction has shown that the backward greedy algorithm can select the optimal subset of unknowns if the perturbation of the data is sufficiently small. We propose an efficient implementation of the backward greedy algorithm that yields a significant improvement in c...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 1999-10, Vol.6 (10), p.266-268 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent work in sparse signal reconstruction has shown that the backward greedy algorithm can select the optimal subset of unknowns if the perturbation of the data is sufficiently small. We propose an efficient implementation of the backward greedy algorithm that yields a significant improvement in computational efficiency over the standard implementation. Furthermore, we propose an efficient algorithm for the case in which the transform matrix is too large to be stored. We analyze the computational complexity and compare the algorithms, and we illustrate the improved efficiency with examples. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/97.789606 |