Controlling Phase Transition toward Future Low-Cost and Eco-friendly Printing of Perovskite Solar Cells

Perovskite solar cells (PSCs) have grown increasingly popular over the past few years and are considered to be game-changers in the energy conversion market. It has became vital to transfer the deep understanding of the perovskite film formation process during lab-scale fabrication to large-scale pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2022-07, Vol.13 (28), p.6503-6513
Hauptverfasser: Liu, Qiuju, Cai, Weilun, Wang, Weiyan, Wang, Haiqiao, Zhong, Yufei, Zhao, Kui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Perovskite solar cells (PSCs) have grown increasingly popular over the past few years and are considered to be game-changers in the energy conversion market. It has became vital to transfer the deep understanding of the perovskite film formation process during lab-scale fabrication to large-scale production. Complex phase transition during film formation has been revealed by in situ strategies. However, there is still debate which phase transition is the right route for a future scalable approach. Herein, we briefly summarize perovskite crystallization during scalable printing processes. The critical information about the intermediates involved in phase transition from precursors to perovskite crystals are discussed because it deeply impacts the morphology of printed films. Finally, important strategies to control phase transition and challenges toward future low-temperature and eco-friendly printing of perovskite solar cells are proposed. The information provided by this Perspective will assist the screening and development of the perovskite phase transition for future cost-efficient printed perovskite panels.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.2c01506