Enhancing the Charging Performance of Lithium-Ion Batteries by Reducing SEI and Charge Transfer Resistances

To enable the mass adoption of electric vehicles, the charging performance of Li-ion batteries needs to be significantly enhanced. The development of electrolytes with enhanced transport properties and faster interfacial reaction is one critical approach to realize fast charging within 10 min. Most...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-07, Vol.14 (29), p.33004-33012
Hauptverfasser: Li, Zongjian, Liu, Jing, Qin, Yunan, Gao, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To enable the mass adoption of electric vehicles, the charging performance of Li-ion batteries needs to be significantly enhanced. The development of electrolytes with enhanced transport properties and faster interfacial reaction is one critical approach to realize fast charging within 10 min. Most current electrolyte studies are focusing on ester-based electrolytes. In this work, an ether-based electrolyte is reported, which shows remarkably better charging performance than commercial carbonate electrolytes and other reported ester-based electrolytes in both half and full cells. Electrochemical and spectroscopic characterization shows that the superior charging performance of the reported electrolyte is due to significantly reduced SEI resistance and charge transfer resistance. Cycling tests show remarkable stability in Li||graphite (gr) half cells, suggesting the potential of the electrolytes to enhance battery charging performance. LiFePO4 (LFP)||gr full cells were further tested, and it is found that the resistance of cells builds up during cycling due to gelation of the electrolyte, which limits the cycling performance of full cells. Potential strategies to address this limitation are discussed.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c04319