Engineering flexible loops to enhance thermal stability of keratinase for efficient keratin degradation

Keratinase-catalyzed degradation of keratin waste has been shown to be a promising recycling method. Although the recombinant KerZ1 derived from Bacillus subtilis has shown the highest activity among the keratinases reported so far, the low thermal stability caused by the unstable flexible loops lim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-11, Vol.845, p.157161-157161, Article 157161
Hauptverfasser: Peng, Zheng, Miao, Zhoudi, Ji, Xiaomei, Zhang, Guoqiang, Zhang, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Keratinase-catalyzed degradation of keratin waste has been shown to be a promising recycling method. Although the recombinant KerZ1 derived from Bacillus subtilis has shown the highest activity among the keratinases reported so far, the low thermal stability caused by the unstable flexible loops limited its keratin-degrading ability. To this end, the flexible loops of KerZ1 were engineered to be more hydrophobic and rigid through B-factor calculations, molecular dynamics simulations, and β-turn redesign. We developed several highly thermostable keratinase variants and showed enhanced keratin degradation activity. In particular, the loop regions of the variants KerZ1A128D/L240N, KerZ1T77E/L240N and KerZ1T77C/A128D were designed to be more stable, with Tm values increased by 8 °C, 6 °C and 5 °C, and corresponding t1/2 increased by 2.3, 3.3 and 5.0 times. The keratin degradation activity of the variant KerZ1T77C/A128D at 60 °C was enhanced by 46 % compared with KerZ1WT. The strategy of this research and the obtained keratinase variants will be a significant improvement in the complete degradation of keratin. [Display omitted] •Degradation of keratin waste by keratinase•Increasing the rigidity of the flexible loop to improve the thermal stability of keratinase•The Tm and half-life of variant KerZ1T77C/A128D increased obviously•The degradation activity of KerZ1T77C/A128D increased by 46 % compared to KerZ1WT
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2022.157161