Zn alleviated salt toxicity in Solanum lycopersicum L. seedlings by reducing Na+ transfer, improving gas exchange, defense system and Zn contents

Soil secondary salinization is a serious menace that has significant influence on the sustainability of agriculture and threatens food security around the world. Zinc (Zn) as an essential plant nutrient associated with many physio-biochemical processes in plants and improve resistance against variou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry 2022-09, Vol.186, p.52-63
Hauptverfasser: Ali, Muhammad, Parveen, Aasma, Malik, Zaffar, Kamran, Muhammad, Saleem, Muhammad Hamzah, Abbasi, Ghulam Hassan, Ahmad, Ijaz, Ahmad, Salman, Sathish, Manda, Okla, Mohammad K., Al-Amri, Saud S., Alaraidh, Ibrahim A., Ali, Shafaqat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soil secondary salinization is a serious menace that has significant influence on the sustainability of agriculture and threatens food security around the world. Zinc (Zn) as an essential plant nutrient associated with many physio-biochemical processes in plants and improve resistance against various abiotic stresses. The role of Zn in acclimation of Solanum lycopersicum L. challenged with salt stress is miserly understood. A hydroponic study was performed with two tomato varieties (Riogrande and Sungold) exposed to the salinity stress (0 mM and 160 mM NaCl) under two Zn concentrations (15 μM and 30 μM ZnSO4). The results revealed that salt stress exerted strongly negative impacts on root and shoot length, fresh and dry biomass, plant water relations, membrane stability, chlorophyll contents, Na+/K+ ratio along with inferior gas exchange attributes and activities of antioxidant enzymes. Moreover, Riogrande was found to be more resistant to salinity stress than Sungold. However, Zn supply significantly alleviated the hazardous effects of salinity by altering compatible solutes accumulation, photosynthetic activity, water relation, soluble sugar contents and providing antioxidant defense against salt stress. The salinity + Zn2 treatment more obviously enhanced RWC (19.0%), MSI (30.8%), SPAD value (17.8%), and activities of SOD (31.7%), POD (28.5%), APX (64.5%) and CAT (23.3%) in Riogrande than Sungold, compared with the corresponding salinity treatment alone. In addition, salinity + Zn2 treatment significantly (P > 0.05) ameliorated salinity stress due to the depreciation in Na+/K+ ratio by 63.3% and 40.8%, Na+ ion relocation from root to shoot by 10.4% and 6.4%, and thereby significantly reduced Na+ ion accumulation by 47.4% and 16.3% in the leaves of Riogrande and Sungold respectively, compared to the salinity treatment alone. Therefore, it was obvious that 30 μM Zn concentration was more effective to induce resistance against salinity stress than 15 μM Zn concentration. Conclusively, it can be reported that exogenous Zn application helps tomato plant to combat adverse saline conditions by modulating photosynthetic and antioxidant capacity along with reduced Na+ uptake at the root surface of tomato plant. •Salt stress has a strong negative impact on the ecophysiology of tomato.•Salt stress also disturbed the mechanisms of antioxidant defense and ion homeostasis.•The salinity-induced impacts in tomato plants can be alleviated by the application of Zn.•Zn su
ISSN:0981-9428
1873-2690
DOI:10.1016/j.plaphy.2022.06.028