Leaching experiments and risk assessment to explore the migration and risk of potentially toxic elements in soil from black shale

Black shale is rich in potentially toxic elements (PTEs) that migrate through rock weathering or rainfall, adversely affecting human health and the environment. In this study, simulated rainfall leaching experiments were used to investigate the migration patterns and leaching kinetics of PTEs in bla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-10, Vol.844, p.156922-156922, Article 156922
Hauptverfasser: Li, Fengyan, Yu, Tao, Huang, Zhenzhong, Jiang, Tianyu, Wang, Lingxiao, Hou, Qingye, Tang, Qifeng, Liu, Jiuchen, Yang, Zhongfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Black shale is rich in potentially toxic elements (PTEs) that migrate through rock weathering or rainfall, adversely affecting human health and the environment. In this study, simulated rainfall leaching experiments were used to investigate the migration patterns and leaching kinetics of PTEs in black shale from the Lower Cambrian Hetang Formation and to analyze the water quality index (WQI) of PTEs in the leachate. A comparison between the risk of PTEs in the leachate and those in the soil was also made to determine the risk sources, risk status, and distribution characteristics of PTEs in the study area. The WQI of the indoor column experimental leachate indicated the highest As contamination. The geo-accumulation index (Igeo) and potential ecological risk (Er) of soils in the entire region revealed that the risk of Cd was the highest. Furthermore, by mapping the distribution of Igeo and Er in soils, the risk level in the region where black shale is located was found to be significantly higher than that in other areas. Comparing the leaching rate of PTEs with the WQI from leaching experiments, the risk associated with As in soil can be inferred to originate mainly from the leaching of black shale. Previous studies on PTEs in black shale in the study area tended to focus on Cd; however, this study found that the risk of As was not negligible. The health risk assessment also showed that the risk at the location of black shale was beyond the accepted range. Overall, this study provided a new and important evaluation law for the level of pollution by PTEs and health risks in typical black shale regions. [Display omitted] •Column tests were used to study the leaching of PTEs from black shales.•Rainfall can leach significant amounts of arsenic from black shales.•Ecological risks are concentrated near black shale regions.•Risks are mainly generated by soil arsenic and cadmium.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2022.156922