Automated development of the contrast–detail curve based on statistical low‐contrast detectability in CT images

Purpose We have developed a software to automatically find the contrast–detail (C–D) curve based on the statistical low‐contrast detectability (LCD) in images of computed tomography (CT) phantoms at multiple cell sizes and to generate minimum detectable contrast (MDC) characteristics. Methods A simp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Clinical Medical Physics 2022-09, Vol.23 (9), p.e13719-n/a
Hauptverfasser: Anam, Choirul, Naufal, Ariij, Fujibuchi, Toshioh, Matsubara, Kosuke, Dougherty, Geoff
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose We have developed a software to automatically find the contrast–detail (C–D) curve based on the statistical low‐contrast detectability (LCD) in images of computed tomography (CT) phantoms at multiple cell sizes and to generate minimum detectable contrast (MDC) characteristics. Methods A simple graphical user interface was developed to set the initial parameters needed to create multiple grid region of interest of various cell sizes with a 2‐pixel increment. For each cell in the grid, the average CT number was calculated to obtain the standard deviation (SD). Detectability was then calculated by multiplying the SD of the mean CT numbers by 3.29. This process was automatically repeated as many times as the cell size was set at initialization. Based on the obtained LCD, the C–D curve was obtained and the target size at an MDC of 0.6% (i.e., 6‐HU difference) was determined. We subsequently investigated the consistency of the target sizes for a 0.6% MDC at four locations within the homogeneous image. We applied the software to images with six noise levels, images of two modules of the American College of Radiology CT phantom, images of four different phantoms, and images of four different CT scanners. We compared the target sizes at a 0.6% MDC based on the statistical LCD and the results from a human observer. Results The developed system was able to measure C–D curves from different phantoms and scanners. We found that the C–D curves follow a power‐law fit. We found that higher noise levels resulted in a higher MDC for a target of the same size. The low‐contrast module image had a slightly higher MDC than the distance module image. The minimum size of an object detected by visual observation was slightly larger than the size using statistical LCD. Conclusions The statistical LCD measurement method can generate a C–D curve automatically, quickly, and objectively.
ISSN:1526-9914
1526-9914
DOI:10.1002/acm2.13719