Anterior transtemporal endoscopic selective amygdalohippocampectomy: a virtual and cadaveric feasibility study

Purpose Selective amygdalohippocampectomy (SelAH) is one of the most common surgical treatments for mesial temporal sclerosis. Microsurgical approaches are associated with the risk of cognitive and visual deficits due to damage to the cortex and white matter (WM) pathways. Our objective is to test t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta neurochirurgica 2022-11, Vol.164 (11), p.2841-2849
Hauptverfasser: Lau, Ruth, Gabarros, Andreu, Martino, Juan, Fernandez-Coello, Alejandro, Sanmillan, Jose-Luis, Benet, Arnau, Kola, Olivia, Rodriguez-Rubio, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Selective amygdalohippocampectomy (SelAH) is one of the most common surgical treatments for mesial temporal sclerosis. Microsurgical approaches are associated with the risk of cognitive and visual deficits due to damage to the cortex and white matter (WM) pathways. Our objective is to test the feasibility of an endoscopic approach through the anterior middle temporal gyrus (aMTG) to perform a SelAH. Methods Virtual simulation with MRI scans of ten patients (20 hemispheres) was used to identify the endoscopic trajectory through the aMTG. A cadaveric study was performed on 22 specimens using a temporal craniotomy. The anterior part of the temporal horn was accessed using a tubular retractor through the aMTG after performing a 1.5 cm corticectomy at 1.5 cm posterior to the temporal pole. Then, an endoscope was introduced. SeIAH was performed in each specimen. The specimens underwent neuronavigation-assisted endoscopic SeIAH to confirm our surgical trajectory. WM dissection using Klingler’s technique was performed on five specimens to assess WM integrity. Results This approach allowed the identification of collateral eminence, lateral ventricular sulcus, choroid plexus, inferior choroidal point, amygdala, hippocampus, and fimbria. SelAH was successfully performed on all specimens, and CT neuronavigation confirmed the planned trajectory. WM dissection confirmed the integrity of language pathways and optic radiations. Conclusions Endoscopic SelAH through the aMTG can be successfully performed with a corticectomy of 15 mm, presenting a reduced risk of vascular injury and damage to WM pathways. This could potentially help to reduce cognitive and visual deficits associated with SelAH.
ISSN:0942-0940
0001-6268
0942-0940
DOI:10.1007/s00701-022-05295-7